scholarly journals A MUC16 IgG Binding Activity Selects for a Restricted Subset of IgG Enriched for Certain Simian Immunodeficiency Virus Epitope Specificities

2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Jeffrey R. Schneider ◽  
Xiaoying Shen ◽  
Chiara Orlandi ◽  
Tinashe Nyanhete ◽  
Sheetal Sawant ◽  
...  

ABSTRACT We have recently shown that MUC16, a component of the glycocalyx of some mucosal barriers, has elevated binding to the G0 glycoform of the Fc portion of IgG. Therefore, IgG from patients chronically infected with human immunodeficiency virus (HIV), who typically exhibit increased amounts of G0 glycoforms, showed increased MUC16 binding compared to uninfected controls. Using the rhesus macaque simian immunodeficiency virus SIVmac251 model, we can compare plasma antibodies before and after chronic infection. We find increased binding of IgG to MUC16 after chronic SIV infection. Antibodies isolated for tight association with MUC16 (MUC16-eluted antibodies) show reduced FcγR engagement and antibody-dependent cellular cytotoxicity (ADCC) activity. The glycosylation profile of these IgGs was consistent with a decrease in FcγR engagement and subsequent ADCC effector function, as they contain a decrease in afucosylated bisecting glycoforms that preferentially bind FcγRs. Testing of the SIV antigen specificity of IgG from SIV-infected macaques revealed that the MUC16-eluted antibodies were enriched for certain specific epitopes, including regions of gp41 and gp120. This enrichment of specific antigen responses for fucosylated bisecting glycoforms and the subsequent association with MUC16 suggests that the immune response has the potential to direct specific epitope responses to localize to the glycocalyx through interaction with this specific mucin. IMPORTANCE Understanding how antibodies are distributed in the mucosal environment is valuable for developing a vaccine to block HIV infection. Here, we study an IgG binding activity in MUC16, potentially representing a new IgG effector function that would concentrate certain antibodies within the glycocalyx to trap pathogens before they can reach the underlying columnar epithelial barriers. These studies reveal that rhesus macaque IgG responses during chronic SIV infection generate increased antibodies that bind MUC16, and interestingly, these MUC16-tethered antibodies are enriched for binding to certain antigens. Therefore, it may be possible to direct HIV vaccine-generated responses to associate with MUC16 and enhance the antibody’s ability to mediate immune exclusion by trapping virions within the glycocalyx and preventing the virus from reaching immune target cells within the mucosa. This concept will ultimately have to be tested in the rhesus macaque model, which is shown here to have MUC16-targeted antigen responses.

2000 ◽  
Vol 74 (20) ◽  
pp. 9388-9395 ◽  
Author(s):  
Simoy Goldstein ◽  
Charles R. Brown ◽  
Houman Dehghani ◽  
Jeffrey D. Lifson ◽  
Vanessa M. Hirsch

ABSTRACT Previous studies with simian immunodeficiency virus (SIV) infection of rhesus macaques suggested that the intrinsic susceptibility of peripheral blood mononuclear cells (PBMC) to infection with SIV in vitro was predictive of relative viremia after SIV challenge. The present study was conducted to evaluate this parameter in a well-characterized cohort of six rhesus macaques selected for marked differences in susceptibility to SIV infection in vitro. Rank order relative susceptibility of PBMC to SIVsmE543-3-infection in vitro was maintained over a 1-year period of evaluation. Differential susceptibility of different donors was maintained in CD8+T-cell-depleted PBMC, macrophages, and CD4+ T-cell lines derived by transformation of PBMC with herpesvirus saimiri, suggesting that this phenomenon is an intrinsic property of CD4+target cells. Following intravenous infection of these macaques with SIVsmE543-3, we observed a wide range in plasma viremia which followed the same rank order as the relative susceptibility established by in vitro studies. A significant correlation was observed between plasma viremia at 2 and 8 weeks postinoculation and in vitro susceptibility (P < 0.05). The observation that the two most susceptible macaques were seropositive for simian T-lymphotropic virus type 1 may suggests a role for this viral infection in enhancing susceptibility to SIV infection in vitro and in vivo. In summary, intrinsic susceptibility of CD4+ target cells appears to be an important factor influencing early virus replication patterns in vivo that should be considered in the design and interpretation of vaccine studies using the SIV/macaque model.


2007 ◽  
Vol 81 (21) ◽  
pp. 11982-11991 ◽  
Author(s):  
Judith N. Mandl ◽  
Roland R. Regoes ◽  
David A. Garber ◽  
Mark B. Feinberg

ABSTRACT Antiviral CD8+ T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4+ T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8+ T cells can have a significant impact on shortening the longevity of infected CD4+ T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8+ T-cell responses on the availability of sufficient CD4+ T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.


2002 ◽  
Vol 76 (12) ◽  
pp. 6016-6026 ◽  
Author(s):  
Bo Peng ◽  
Rebecca Voltan ◽  
Lulu Lim ◽  
Yvette Edghill-Smith ◽  
Sanjay Phogat ◽  
...  

ABSTRACT Elucidation of the host factors which influence susceptibility to human immunodeficiency virus or simian immunodeficiency virus (SIV) infection and disease progression has important theoretical and practical implications. Rhesus macaque 359, a vaccine control animal, resisted two successive intravaginal challenges with SIVmac251 and failed to seroconvert. Here, after an additional intrarectal SIVmac32H challenge, macaque 359 remained highly resistant to infection. Viral RNA (106 copies/ml) was observed in plasma only at week 2 postchallenge. Virus isolation and proviral DNA were positive only once at week eight postchallenge. The animal remained seronegative and cleared SIV in vivo. Its blood and lymph node cells obtained at 49 weeks after intrarectal challenge did not transmit SIV to a naive macaque. We found that the resistance of macaque 359 to SIV infection was not due to a high level of CD8+ suppressor activity but to an inherent resistance of its CD4+ T cells. To elucidate the basis for the unusually strong resistance of macaque 359 to SIV infection in vivo and in vitro, we investigated early events of viral infection and replication in CD4+ cells of macaque 359, including expression and mutation screening of SIV coreceptors and analysis of viral entry and reverse transcription. Mutation screening revealed no genetic alteration in SIV coreceptors. PCR analysis revealed a significant delay in production of early in vitro reverse transcription intermediates in macaque 359 cells compared to susceptible controls, but cell fusion assays showed that SIV entered the CD4+ CCR5+ cells of macaque 359 as readily as cells of macaques susceptible to SIV infection. Our results suggest that the resistance of macaque 359 to SIV infection is due to a postentry block in viral replication and implicate a cellular inhibitory mechanism in its CD4+ T cells. Identification of this host mechanism will help further elucidate the biochemistry of reverse transcription and may suggest therapeutic strategies. Determining the prevalence of this host resistance mechanism among macaques may lead to better design of SIV pathogenesis and vaccine studies.


2001 ◽  
Vol 75 (6) ◽  
pp. 3028-3033 ◽  
Author(s):  
Yelin Xiong ◽  
Mark A. Luscher ◽  
John D. Altman ◽  
Michael Hulsey ◽  
Harriet L. Robinson ◽  
...  

ABSTRACT A vigorous expansion of antigen-specific CD8+ T cells lacking apparent effector function was observed in a rhesus macaque acutely infected with the simian immunodeficiency virus (SIV) strain SIVmac239. Antigen-specific CD8+ T cells were identified using antigenic-peptide class I major histocompatibility complex tetramers. As many as 8.3% of CD8+ cells recognized the Mamu-A*01-associated SIV epitope Gag181–189(CTPYDINQM); however, these cells demonstrated no effector function when presented with peptide-incubated targets, as measured by intracellular cytokine staining for gamma interferon (IFN-γ), interleukin-2 (IL-2) production, or direct cellular lysis. Similar results were observed with three other SIV peptide antigens. Nonresponsiveness did not correlate with apoptosis of the CD8+ cells, nor were cells from this macaque impaired in their ability to present peptide antigens. Associated with the nonresponsive state was a lack of IL-2 production and decreased IL-2 receptor expression. Exogenous IL-2 treatment for 1 week in the absence of antigenic stimulation restored antigen-specific responses and the quantitative correlation between tetramer recognition and antigen-responsive IFN-γ secretion. This case report suggests a regulatory mechanism that may impede the effector function of antigen-specific T cells during acute infection with SIV or human immunodeficiency virus in some cases. This mechanism may participate in the failure of the immune system to limit infection.


2005 ◽  
Vol 79 (8) ◽  
pp. 4944-4951 ◽  
Author(s):  
Emily D. Overholser ◽  
Tahar Babas ◽  
M. Christine Zink ◽  
Sheila A. Barber ◽  
Janice E. Clements

ABSTRACT Previous studies have demonstrated that the genetic determinants of simian immunodeficiency virus (SIV) neurovirulence map to the env and nef genes. Recent studies from our laboratory demonstrated that SIV replication in primary rhesus macaque astrocyte cultures is dependent upon the nef gene. Here, we demonstrate that macrophage tropism is not sufficient for replication in astrocytes and that specific amino acids in the transmembrane (TM) portion of Env are also important for optimal SIV replication in astrocytes. Specifically, a Gly at amino acid position 751 and truncation of the cytoplasmic tail of TM are required for efficient replication in these cells. Studies using soluble CD4 demonstrated that these changes within the TM protein regulate CD4-independent, CCR5-dependent entry of virus into astrocytes. In addition, we observed that two distinct CD4-independent, neuroinvasive strains of SIV/DeltaB670 also replicated efficiently in astrocytes, further supporting the role of CD4 independence as an important determinant of SIV infection of astrocytes in vitro and in vivo.


2000 ◽  
Vol 74 (11) ◽  
pp. 5075-5082 ◽  
Author(s):  
Stefan Pöhlmann ◽  
Benhur Lee ◽  
Silke Meister ◽  
Mandy Krumbiegel ◽  
George Leslie ◽  
...  

ABSTRACT It has been established that many simian immunodeficiency virus (SIV) isolates utilize the orphan receptors GPR15 and STRL33 about as efficiently as the chemokine receptor CCR5 for entry into target cells. Most studies were performed, however, with coreceptors of human origin. We found that SIV from captive rhesus macaques (SIVmac) can utilize both human and simian CCR5 and GPR15 with comparable efficiencies. Strikingly, however, only human STRL33 (huSTRL33), not rhesus macaque STRL33 (rhSTRL33), functioned efficiently as an entry cofactor for a variety of isolates of SIVmac and SIV from sooty mangabeys. A single amino acid substitution of S30R in huSTRL33 impaired coreceptor activity, and the reverse change in rhSTRL33 greatly increased coreceptor activity. In comparison, species-specific sequence variations in N-terminal tyrosines in STRL33 had only moderate effects on SIV entry. These results show that a serine residue located just outside of the cellular membrane in the N terminus of STRL33 is critical for SIV coreceptor function. Interestingly, STRL33 derived from sooty mangabeys, a natural host of SIV, also contained a serine at the corresponding position and was used efficiently as an entry cofactor. These results suggest that STRL33 is not a relevant coreceptor in the SIV/macaque model but may play a role in SIV replication and transmission in naturally infected sooty mangabeys.


2016 ◽  
Vol 24 (1) ◽  
Author(s):  
Kara Jensen ◽  
Myra Grace dela Pena-Ponce ◽  
Michael Piatak ◽  
Rebecca Shoemaker ◽  
Kelli Oswald ◽  
...  

ABSTRACT Our goal is to develop a pediatric combination vaccine to protect the vulnerable infant population against human immunodeficiency virus type 1 (HIV-1) and tuberculosis (TB) infections. The vaccine consists of an auxotroph Mycobacterium tuberculosis strain that coexpresses HIV antigens. Utilizing an infant rhesus macaque model, we have previously shown that this attenuated M. tuberculosis (AMtb)-simian immunodeficiency virus (SIV) vaccine is immunogenic, and although the vaccine did not prevent oral SIV infection, a subset of vaccinated animals was able to partially control virus replication. However, unexpectedly, vaccinated infants required fewer SIV exposures to become infected compared to naive controls. Considering that the current TB vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), can induce potent innate immune responses and confer pathogen-unspecific trained immunity, we hypothesized that an imbalance between enhanced myeloid cell function and immune activation might have influenced the outcome of oral SIV challenge in AMtb-SIV-vaccinated infants. To address this question, we used archived samples from unchallenged animals from our previous AMtb-SIV vaccine studies and vaccinated additional infant macaques with BCG or AMtb only. Our results show that vaccinated infants, regardless of vaccine strain or regimen, had enhanced myeloid cell responses. However, CD4+ T cells were concurrently activated, and the persistence of these activated target cells in oral and/or gastrointestinal tissues may have facilitated oral SIV infection. Immune activation was more pronounced in BCG-vaccinated infant macaques than in AMtb-vaccinated infant macaques, indicating a role for vaccine attenuation. These findings underline the importance of understanding the interplay of vaccine-induced immunity and immune activation and its effect on HIV acquisition risk and outcome in infants.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 806
Author(s):  
Nongthombam Boby ◽  
Alyssa Ransom ◽  
Barcley T. Pace ◽  
Kelsey M. Williams ◽  
Christopher Mabee ◽  
...  

Transforming growth factor-β signaling (TGF-β) maintains a balanced physiological function including cell growth, differentiation, and proliferation and regulation of immune system by modulating either SMAD2/3 and SMAD7 (SMAD-dependent) or SMAD-independent signaling pathways under normal conditions. Increased production of TGF-β promotes immunosuppression in Human Immunodeficiency Virus (HIV)/Simian Immunodeficiency Virus (SIV) infection. However, the cellular source and downstream events of increased TGF-β production that attributes to its pathological manifestations remain unknown. Here, we have shown increased production of TGF-β in a majority of intestinal CD3−CD20−CD68+ cells from acute and chronically SIV infected rhesus macaques, which negatively correlated with the frequency of jejunum CD4+ T cells. No significant changes in intestinal TGF-β receptor II expression were observed but increased production of the pSMAD2/3 protein and SMAD3 gene expression in jejunum tissues that were accompanied by a downregulation of SMAD7 protein and gene expression. Enhanced TGF-β production by intestinal CD3−CD20−CD68+ cells and increased TGF-β/SMAD-dependent signaling might be due to a disruption of a negative feedback loop mediated by SMAD7. This suggests that SIV infection impacts the SMAD-dependent signaling pathway of TGF-β and provides a potential framework for further study to understand the role of viral factor(s) in modulating TGF-β production and downregulating SMAD7 expression in SIV. Regulation of mucosal TGF-β expression by therapeutic TGF-β blockers may help to create effective antiviral mucosal immune responses.


2008 ◽  
Vol 82 (11) ◽  
pp. 5618-5630 ◽  
Author(s):  
Ronald S. Veazey ◽  
Paula M. Acierno ◽  
Kimberly J. McEvers ◽  
Susanne H. C. Baumeister ◽  
Gabriel J. Foster ◽  
...  

ABSTRACT Previously we have shown that CD8+ T cells are critical for containment of simian immunodeficiency virus (SIV) viremia and that rapid and profound depletion of CD4+ T cells occurs in the intestinal tract of acutely infected macaques. To determine the impact of SIV-specific CD8+ T-cell responses on the magnitude of the CD4+ T-cell depletion, we investigated the effect of CD8+ lymphocyte depletion during primary SIV infection on CD4+ T-cell subsets and function in peripheral blood, lymph nodes, and intestinal tissues. In peripheral blood, CD8+ lymphocyte-depletion changed the dynamics of CD4+ T-cell loss, resulting in a more pronounced loss 2 weeks after infection, followed by a temporal rebound approximately 2 months after infection, when absolute numbers of CD4+ T cells were restored to baseline levels. These CD4+ T cells showed a markedly skewed phenotype, however, as there were decreased levels of memory cells in CD8+ lymphocyte-depleted macaques compared to controls. In intestinal tissues and lymph nodes, we observed a significantly higher loss of CCR5+ CD45RA− CD4+ T cells in CD8+ lymphocyte-depleted macaques than in controls, suggesting that these SIV-targeted CD4+ T cells were eliminated more efficiently in CD8+ lymphocyte-depleted animals. Also, CD8+ lymphocyte depletion significantly affected the ability to generate SIV Gag-specific CD4+ T-cell responses and neutralizing antibodies. These results reemphasize that SIV-specific CD8+ T-cell responses are absolutely critical to initiate at least partial control of SIV infection.


2006 ◽  
Vol 80 (6) ◽  
pp. 3083-3087 ◽  
Author(s):  
Máire F. Quigley ◽  
Kristina Abel ◽  
Bartek Zuber ◽  
Christopher J. Miller ◽  
Johan K. Sandberg ◽  
...  

ABSTRACT Perforin-mediated cytotoxicity is a major effector function of virus-specific CD8 T cells. We have investigated the expression of perforin in the gut, an important site of simian immunodeficiency virus (SIV) pathogenesis, during experimental SIV infection of rhesus macaques. We observed significant increases in perforin protein and mRNA expression levels in the colons of SIV-infected macaques as early as 21 days after infection. However, during chronic infection, despite ongoing viral replication, perforin expression returned to levels similar to those detected in SIV-naïve animals. These findings demonstrate the presence of a robust perforin-positive response in gastrointestinal CD8 T cells during acute, but not chronic, SIV infection.


Sign in / Sign up

Export Citation Format

Share Document