scholarly journals In VitroEvidence Supports Membrane Alanyl Aminopeptidase N as a Receptor for a Plant Virus in the Pea Aphid Vector

2015 ◽  
Vol 89 (22) ◽  
pp. 11203-11212 ◽  
Author(s):  
Lucas B. Linz ◽  
Sijun Liu ◽  
Nanasaheb P. Chougule ◽  
Bryony C. Bonning

ABSTRACTInsect-borne plant viruses cause significant agricultural losses and jeopardize sustainable global food production. Although blocking plant virus transmission would allow for crop protection, virus receptors in insect vectors are unknown. Here we identify membrane alanyl aminopeptidase N (APN) as a receptor for pea enation mosaic virus (PEMV) coat protein (CP) in the gut of the pea aphid,Acyrthosiphon pisum, using a far-Western blot method. Pulldown and immunofluorescence binding assays and surface plasmon resonance were used to confirm and characterize CP-APN interaction. PEMV virions and a peptide comprised of PEMV CP fused to a proline-rich hinge (-P-) and green fluorescent protein (CP-P-GFP) specifically bound to APN. Recombinant APN expressed in Sf9 cells resulted in internalization of CP-P-GFP, which was visualized by confocal microscopy; such internalization is an expected hallmark of a functional gut receptor. Finally, in assays with aphid gut-derived brush border membrane vesicles, binding of CP-P-GFP competed with binding of GBP3.1, a peptide previously demonstrated to bind to APN in the aphid gut and to impede PEMV uptake into the hemocoel; this finding supports the hypothesis that GBP3.1 and PEMV bind to and compete for the same APN receptor. Thesein vitrodata combined with previously publishedin vivoexperiments (S. Liu, S. Sivakumar, W. O. Sparks, W. A. Miller, and B. C. Bonning, Virology 401:107–116, 2010,http://dx.doi.org/10.1016/j.virol.2010.02.009) support the identification of APN as the first receptor in a plant virus vector. Knowledge of this receptor will provide for technologies based on PEMV-APN interaction designed to block plant virus transmission and to suppress aphid populations.IMPORTANCEA significant proportion of global food production is lost to insect pests. Aphids, in addition to weakening plants by feeding on their sap, are responsible for transmitting about half of the plant viruses vectored by insects. Growers rely heavily on the application of chemical insecticides to manage both aphids and aphid-vectored plant viral disease. To increase our understanding of plant virus-aphid vector interaction, we providein vitroevidence supporting earlierin vivowork for identification of a receptor protein in the aphid gut called aminopeptidase N, which is responsible for entry of the plant virus pea enation mosaic virus into the pea aphid vector. Enrichment of proteins found on the surface of the aphid gut epithelium resulted in identification of this first aphid gut receptor for a plant virus. This discovery is particularly important since the disruption of plant virus binding to such a receptor may enable the development of a nonchemical strategy for controlling aphid-vectored plant viruses to maximize food production.

2021 ◽  
Author(s):  
Huogen Xiao ◽  
Etienne Lord ◽  
Hélène Sanfaçon

The NIa protease of potyviruses is a chymotrypsin-like cysteine protease related to the picornavirus 3C protease. It is also a multifunctional protein known to play multiple roles during virus infection. Picornavirus 3C proteases cleave hundreds of host proteins to facilitate virus infection. However, whether or not potyvirus NIa proteases cleave plant proteins has so far not been tested. Regular expression search using the cleavage site consensus sequence [EQN]xVxH[QE]/[SGTA] for the plum pox virus (PPV) protease identified 90-94 putative cleavage events in the proteomes of Prunus persica (a crop severely affected by PPV), Arabidopsis thaliana and Nicotiana benthamiana (two experimental hosts). In vitro processing assays confirmed cleavage of six A. thaliana and five P. persica proteins by the PPV protease. These proteins were also cleaved in vitro by the protease of turnip mosaic virus (TuMV), which has a similar specificity. We confirmed in vivo cleavage of a transiently expressed tagged version of AtEML2, an EMSY-like protein belonging to a family of nuclear histone readers known to be involved in pathogen resistance. Cleavage of AtEML2 was efficient and was observed in plants that co-expressed the PPV or TuMV NIa proteases or in plants that were infected with TuMV. We also show partial in vivo cleavage of AtDUF707, a membrane protein annotated as lysine ketoglutarate reductase trans-splicing protein. Although cleavage of the corresponding endogenous plant proteins remains to be confirmed, the results show that a plant virus protease can cleave host proteins during virus infection and highlight a new layer of plant-virus interactions. Importance Viruses are highly adaptive and use multiple molecular mechanisms to highjack or modify the cellular resources to their advantage. They must also counteract or evade host defense responses. One well-characterized mechanism used by vertebrate viruses is the proteolytic cleavage of host proteins to inhibit the activities of these proteins and/or to produce cleaved protein fragments that are beneficial to the virus infection cycle. Even though almost half of the known plant viruses encode at least one protease, it was not known whether plant viruses employ this strategy. Using an in silico prediction approach and the well-characterized specificity of potyvirus NIa proteases, we were able to identify hundreds of putative cleavage sites in plant proteins, several of which were validated by downstream experiments. It can be anticipated that many other plant virus proteases also cleave host proteins and that the identification of these cleavage events will lead to novel antiviral strategies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Anthony Gobert ◽  
Yifat Quan ◽  
Mathilde Arrivé ◽  
Florent Waltz ◽  
Nathalie Da Silva ◽  
...  

AbstractPlant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 963
Author(s):  
Maria C. Holeva ◽  
Athanasios Sklavounos ◽  
Rajendran Rajeswaran ◽  
Mikhail M. Pooggin ◽  
Andreas E. Voloudakis

Cucumber mosaic virus (CMV) is a destructive plant virus with worldwide distribution and the broadest host range of any known plant virus, as well as a model plant virus for understanding plant–virus interactions. Since the discovery of RNA interference (RNAi) as a major antiviral defense, RNAi-based technologies have been developed for plant protection against viral diseases. In plants and animals, a key trigger of RNAi is double-stranded RNA (dsRNA) processed by Dicer and Dicer-like (DCL) family proteins in small interfering RNAs (siRNAs). In the present study, dsRNAs for coat protein (CP) and 2b genes of CMV were produced in vitro and in vivo and applied onto tobacco plants representing a systemic solanaceous host as well as on a local host plant Chenopodium quinoa. Both dsRNA treatments protected plants from local and systemic infection with CMV, but not against infection with unrelated viruses, confirming sequence specificity of antiviral RNAi. Antiviral RNAi was effective when dsRNAs were applied simultaneously with or four days prior to CMV inoculation, but not four days post inoculation. In vivo-produced dsRNAs were more effective than the in vitro-produced; in treatments with in vivo dsRNAs, dsRNA-CP was more effective than dsRNA-2b, while the effects were opposite with in vitro dsRNAs. Illumina sequencing of small RNAs from in vivo dsRNA-CP treated and non-treated tobacco plants revealed that interference with CMV infection in systemic leaves coincides with strongly reduced accumulation of virus-derived 21- and 22-nucleotide (nt) siRNAs, likely generated by tobacco DCL4 and DCL2, respectively. While the 21-nt class of viral siRNAs was predominant in non-treated plants, 21-nt and 22-nt classes accumulated at almost equal (but low) levels in dsRNA treated plants, suggesting that dsRNA treatment may boost DCL2 activity. Taken together, our findings confirm the efficacy of topical application of dsRNA for plant protection against viruses and shed more light on the mechanism of antiviral RNAi.


2015 ◽  
Vol 89 (24) ◽  
pp. 12427-12440 ◽  
Author(s):  
Robyn Roberts ◽  
Jincan Zhang ◽  
Laura K. Mayberry ◽  
Satyanarayana Tatineni ◽  
Karen S. Browning ◽  
...  

ABSTRACTSeveral plant viruses encode elements at the 5′ end of their RNAs, which, unlike most cellular mRNAs, can initiate translation in the absence of a 5′ m7GpppG cap. Here, we describe an exceptionally long (739-nucleotide [nt]) leader sequence in triticum mosaic virus (TriMV), a recently emerged wheat pathogen that belongs to thePotyviridaefamily of positive-strand RNA viruses. We demonstrate that the TriMV 5′ leader drives strong cap-independent translation in both wheat germ extract and oat protoplasts through a novel, noncanonical translation mechanism. Translation preferentially initiates at the 13th start codon within the leader sequence independently of eIF4E but involves eIF4G. We truncated the 5′ leader to a 300-nucleotide sequence that drives cap-independent translation from the 5′ end. We show that within this sequence, translation activity relies on a stem-loop structure identified at nucleotide positions 469 to 490. The disruption of the stem significantly impairs the function of the 5′ untranslated region (UTR) in driving translation and competing against a capped RNA. Additionally, the TriMV 5′ UTR can direct translation from an internal position of a bicistronic mRNA, and unlike cap-driven translation, it is unimpaired when the 5′ end is blocked by a strong hairpin in a monocistronic reporter. However, the disruption of the identified stem structure eliminates such a translational advantage. Our results reveal a potent and uniquely controlled translation enhancer that may provide new insights into mechanisms of plant virus translational regulation.IMPORTANCEMany members of thePotyviridaefamily rely on their 5′ end for translation. Here, we show that the 739-nucleotide-long triticum mosaic virus 5′ leader bears a powerful translation element with features distinct from those described for other plant viruses. Despite the presence of 12 AUG start codons within the TriMV 5′ UTR, translation initiates primarily at the 13th AUG codon. The TriMV 5′ UTR is capable of driving cap-independent translationin vitroandin vivo, is independent of eIF4E, and can drive internal translation initiation. A hairpin structure at nucleotide positions 469 to 490 is required for the cap-independent translation and internal translation initiation abilities of the element and plays a role in the ability of the TriMV UTR to compete against a capped RNAin vitro. Our results reveal a novel translation enhancer that may provide new insights into the large diversity of plant virus translation mechanisms.


Author(s):  
Sara Laitinen ◽  
Malin Wickstrom ◽  
Peder Fredlund Fuchs ◽  
Par Gerwins ◽  
Rolf Larsson ◽  
...  
Keyword(s):  

2015 ◽  
Vol 129 ◽  
pp. 130-136 ◽  
Author(s):  
Agnese Blandino ◽  
Chiara Lico ◽  
Selene Baschieri ◽  
Lanfranco Barberini ◽  
Carlo Cirotto ◽  
...  

2002 ◽  
Vol 76 (18) ◽  
pp. 9135-9142 ◽  
Author(s):  
Frédéric Baribaud ◽  
Stefan Pöhlmann ◽  
George Leslie ◽  
Frank Mortari ◽  
Robert W. Doms

ABSTRACT The C-type lectins DC-SIGN and DC-SIGNR efficiently bind human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains and can transmit bound virus to adjacent CD4-positive cells. DC-SIGN also binds efficiently to the Ebola virus glycoprotein, enhancing Ebola virus infection. DC-SIGN is thought to be responsible for the ability of dendritic cells (DCs) to capture HIV and transmit it to T cells, thus promoting HIV dissemination in vitro and perhaps in vivo as well. To investigate DC-SIGN function and expression levels on DCs, we characterized a panel of monoclonal antibodies (MAbs) directed against the carbohydrate recognition domain of DC-SIGN. Using quantitative fluorescence-activated cell sorter technology, we found that DC-SIGN is highly expressed on immature monocyte-derived DCs, with at least 100,000 copies and often in excess of 250,000 copies per DC. There was modest variation (three- to fourfold) in DC-SIGN expression levels between individuals and between DCs isolated from the same individual at different times. Several MAbs efficiently blocked virus binding to cell lines expressing human or rhesus DC-SIGN, preventing HIV and SIV transmission. Interactions with Ebola virus pseudotypes were also blocked efficiently. Despite their ability to block virus-DC-SIGN interactions on cell lines, these antibodies only inhibited transmission of virus from DCs by approximately 50% or less. These results indicate that factors other than DC-SIGN may play important roles in the ability of DCs to capture and transmit HIV.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Karen W. Buckheit ◽  
Robert W. Buckheit

Significant advancements in topical microbicide development have occurred since the prevention strategy was first described as a means to inhibit the sexual transmission of HIV-1. The lack of clinical efficacy of the first generation microbicide products has focused development attention on specific antiretroviral agents, and these agents have proven partially successful in human clinical trials. With greater understanding of vaginal and rectal virus infection, replication, and dissemination, better microbicide products and delivery strategies should result in products with enhanced potency. However, a variety of development gaps exist which relate to product dosing, formulation and delivery, and pharmacokinetics and pharmacodynamics which must be better understood in order to prioritize microbicide products for clinical development. In vitro, ex vivo, and in vivo models must be optimized with regard to these development gaps in order to put the right product at the right place, at the right time, and at the right concentration for effective inhibition of virus transmission. As the microbicide field continues to evolve, we must harness the knowledge gained from unsuccessful and successful clinical trials and development programs to continuously enhance our preclinical development algorithms.


2021 ◽  
Author(s):  
Nik J. Cunniffe ◽  
Nick P. Taylor ◽  
Frédéric M. Hamelin ◽  
Michael J. Jeger

ABSTRACTMany plant viruses are transmitted by insect vectors. Transmission can be described as persistent or non-persistent depending on rates of acquisition, retention, and inoculation of virus. Much experimental evidence has accumulated indicating vectors can prefer to settle and/or feed on infected versus noninfected host plants. For persistent transmission, vector preference can also be conditional, depending on the vector’s own infection status. Since viruses can alter host plant quality as a resource for feeding, infection potentially also affects vector population dynamics. Here we use mathematical modelling to develop a theoretical framework addressing the effects of vector preferences for landing, settling and feeding – as well as potential effects of infection on vector population density – on plant virus epidemics. We explore the consequences of preferences that depend on the host (infected or healthy) and vector (viruliferous or nonviruliferous) phenotypes, and how this is affected by the form of transmission, persistent or non-persistent. We show how different components of vector preference have characteristic effects on both the basic reproduction number and the final incidence of disease. We also show how vector preference can induce bistability, in which the virus is able to persist even when it cannot invade from very low densities. Feedbacks between plant infection status, vector population dynamics and virus transmission potentially lead to very complex dynamics, including sustained oscillations. Our work is supported by an interactive interface https://plantdiseasevectorpreference.herokuapp.com/. Our model reiterates the importance of coupling virus infection to vector behaviour, life history and population dynamics to fully understand plant virus epidemics.


1994 ◽  
Vol 8 (3) ◽  
pp. 187-195
Author(s):  
Tomoji Kocha ◽  
Etsuko Ohtsuka ◽  
Takayuki Funahashi ◽  
Teruo Fukuda ◽  
Takaaki Aoyagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document