scholarly journals Heterogeneous Nuclear Ribonucleoprotein A1 (hnRNP A1) and hnRNP A2 Inhibit Splicing to Human Papillomavirus 16 Splice Site SA409 through a UAG-Containing Sequence in the E7 Coding Region

2020 ◽  
Vol 94 (20) ◽  
Author(s):  
Yunji Zheng ◽  
Johanna Jönsson ◽  
Chengyu Hao ◽  
Shirin Shoja Chaghervand ◽  
Xiaoxu Cui ◽  
...  

ABSTRACT Human papillomavirus 16 (HPV16) 5′-splice site SD226 and 3′-splice site SA409 are required for production of the HPV16 E7 mRNAs, whereas unspliced mRNAs produce E6 mRNAs. The E6 and E7 proteins are essential in the HPV16 replication cycle but are also the major HPV16 proteins required for induction and maintenance of malignancy caused by HPV16 infection. Thus, a balanced expression of unspliced and spliced mRNAs is required for production of sufficient quantities of E6 and E7 proteins under physiological and pathophysiological conditions. If splicing becomes too efficient, the levels of unspliced E6 mRNAs will decrease below a threshold level that is no longer able to produce E6 protein quantities high enough to significantly reduce p53 protein levels. Similarly, if splicing becomes too inefficient, the levels of spliced E7 mRNAs will decrease below a threshold level that is no longer able to produce E7 protein quantities high enough to significantly reduce pRb protein levels. To determine how splicing between SD226 and SA409 is regulated, we have investigated how SA409 is controlled by the cellular proteins hnRNP A1 and hnRNP A2, two proteins that have been shown previously to control HPV16 gene expression. We found that hnRNP A1 and A2 interacted directly and specifically with a C-less RNA element located between HPV16 nucleotide positions 594 and 604 downstream of SA409. Overexpression of hnRNP A1 inhibited SA409 and promoted production of unspliced E6 mRNAs at the expense of the E7 mRNAs, whereas overexpression of hnRNP A2 inhibited SA409 to redirect splicing to SA742, a downstream 3′-splice site that is used for generation of HPV16 E6̂E7, E1, and E4 mRNAs. Thus, high levels of either hnRNP A1 or hnRNP A2 inhibited production of the promitotic HPV16 E7 protein. We show that the hnRNP A1 and A2 proteins control the relative levels of the HPV16 unspliced and spliced HPV16 E6 and E7 mRNAs and function as inhibitors of HPV16 E7 expression. IMPORTANCE Human papillomavirus type 16 (HPV16) belongs to the high-risk-group of HPVs and is causing a variety of anogenital cancers and head and neck cancer. The two HPV16 oncoproteins E6 and E7 prevent apoptosis and promote mitosis and are essential for completion of the HPV16 life cycle and for transformation of the infected cell and maintenance of malignancy. E6 and E7 are produced from two mRNAs that are generated in a mutually exclusive manner by alternative splicing. While E6 protein is made from the unspliced mRNA, E7 is made from the spliced version of the same pre-mRNA. Since sufficient quantities of both E6 and E7 are required for malignant transformation, this intricate arrangement of gene expression renders E6 and E7 expression vulnerable to external interference. Since antiviral drugs to HPV16 are not available, a detailed knowledge of the regulation of HPV16 E6 and E7 mRNA splicing may uncover novel targets for therapy.

2003 ◽  
Vol 77 (2) ◽  
pp. 1551-1563 ◽  
Author(s):  
Rosa Anna DeFilippis ◽  
Edward C. Goodwin ◽  
Lingling Wu ◽  
Daniel DiMaio

ABSTRACT Cervical cancer cells express high-risk human papillomavirus (HPV) E6 and E7 proteins, and repression of HPV gene expression causes the cells to cease proliferation and undergo senescence. However, it is not known whether both HPV proteins are required to maintain the proliferative state of cervical cancer cells, or whether mutations that accumulate during carcinogenesis eliminate the need for one or the other of them. To address these questions, we used the bovine papillomavirus E2 protein to repress the expression of either the E6 protein or the E7 protein encoded by integrated HPV18 DNA in HeLa cervical carcinoma cells. Repression of the E7 protein activated the Rb pathway but not the p53 pathway and triggered senescence, whereas repression of the E6 protein activated the p53 pathway but not the Rb pathway and triggered both senescence and apoptosis. Telomerase activity, cyclin-dependent kinase activity, and expression of c-myc were markedly inhibited by repression of either E6 or E7. These results demonstrate that continuous expression of both the E6 and the E7 protein is required for optimal proliferation of cervical carcinoma cells and that the two viral proteins exert distinct effects on cell survival and proliferation. Therefore, strategies that inhibit the expression or activity of either viral protein are likely to inhibit the growth of HPV-associated cancers.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Masahiko Ajiro ◽  
Zhi-Ming Zheng

ABSTRACTTranscripts of human papillomavirus 16 (HPV16) E6 and E7 oncogenes undergo alternative RNA splicing to produce multiple splice isoforms. However, the importance of these splice isoforms is poorly understood. Here we report a critical role of E6^E7, a novel isoform containing the 41 N-terminal amino acid (aa) residues of E6 and the 38 C-terminal aa residues of E7, in the regulation of E6 and E7 stability. Through mass spectrometric analysis, we identified that HSP90 and GRP78, which are frequently upregulated in cervical cancer tissues, are two E6^E7-interacting proteins responsible for the stability and function of E6^E7, E6, and E7. Although GRP78 and HSP90 do not bind each other, GRP78, but not HSP90, interacts with E6 and E7. E6^E7 protein, in addition to self-binding, interacts with E6 and E7 in the presence of GRP78 and HSP90, leading to the stabilization of E6 and E7 by prolonging the half-life of each protein. Knocking down E6^E7 expression in HPV16-positive CaSki cells by a splice junction-specific small interfering RNA (siRNA) destabilizes E6 and E7 and prevents cell growth. The same is true for the cells with a GRP78 knockdown or in the presence of an HSP90 inhibitor. Moreover, mapping and alignment analyses for splicing elements in 36 alpha-HPVs (α-HPVs) suggest the possible expression of E6^E7 mostly by other oncogenic or possibly oncogenic α-HPVs (HPV18, -30, -31, -39, -42, -45, -56, -59, -70, and -73). HPV18 E6^E7 is detectable in HPV18-positive HeLa cells and HPV18-infected raft tissues. All together, our data indicate that viral E6^E7 and cellular GRP78 or HSP90 might be novel targets for cervical cancer therapy.IMPORTANCEHPV16 is the most prevalent HPV genotype, being responsible for 60% of invasive cervical cancer cases worldwide. What makes HPV16 so potent in the development of cervical cancer remains a mystery. We discovered in this study that, besides producing two well-known oncoproteins, E6 and E7, seen in other high-risk HPVs, HPV16 produces E6^E7, a novel splice isoform of E6 and E7. E6^E7, in addition to self-interacting, binds cellular chaperone proteins, HSP90 and GRP78, and viral E6 and E7 to increase the steady-state levels and half-lives of viral oncoproteins, leading to cell proliferation. The splicingciselements in the regulation of HPV16 E6^E7 production are highly conserved in 11 oncogenic or possibly oncogenic HPVs, and we confirmed the production of HPV18 E6^E7 in HPV18-infected cells. This study provides new insight into the mechanism of splicing, the interplay between different products of the polycistronic viral message, and the role of the host chaperones as they function.


2009 ◽  
Vol 83 (17) ◽  
pp. 8885-8892 ◽  
Author(s):  
Robin M. Vos ◽  
Jennifer Altreuter ◽  
Elizabeth A. White ◽  
Peter M. Howley

ABSTRACT Proteomic identification of human papillomavirus type 16 (HPV16) E6-interacting proteins revealed several proteins involved in ubiquitin-mediated proteolysis. In addition to the well-characterized E6AP ubiquitin-protein ligase, a second HECT domain protein (HERC2) and a deubiquitylating enzyme (USP15) were identified by tandem affinity purification of HPV16 E6-associated proteins. This study focuses on the functional consequences of the interaction of E6 with USP15. Overexpression of USP15 resulted in increased levels of the E6 protein, and the small interfering RNA-mediated knockdown of USP15 decreased E6 protein levels. These results implicate USP15 directly in the regulation of E6 protein stability and suggest that ubiquitylated E6 could be a substrate for USP15 ubiquitin peptidase activity. It remains possible that E6 could affect the activity of USP15 on specific cellular substrates, a hypothesis that can be tested as more is learned about the substrates and pathways controlled by USP15.


Author(s):  
Francesca Paolini ◽  
Carla Amici ◽  
Mariantonia Carosi ◽  
Claudia Bonomo ◽  
Paola Di Bonito ◽  
...  

Abstract Background The oncogenic activity of the high risk human papillomavirus type 16 (HPV16) is fully dependent on the E6 and E7 viral oncoproteins produced during viral infection. The oncoproteins interfere with cellular homeostasis by promoting proliferation, inhibiting apoptosis and blocking epithelial differentiation, driving the infected cells towards neoplastic progression. The causal relationship between expression of E6/E7 and cellular transformation allows inhibiting the oncogenic process by hindering the activity of the two oncoproteins. We previously developed and characterized some antibodies in single-chain format (scFvs) against the HPV16 E6 and E7 proteins, and demonstrated both in vitro and in vivo their antitumor activity consisting of protective efficacy against tumor progression of HPV16-positive cells. Methods Envisioning clinical application of the best characterized anti-HPV16 E6 and –HPV16 E7 scFvs, we verified their activity in the therapeutic setting, on already implanted tumors. Recombinant plasmids expressing the anti-HPV16 E6 scFvI7 with nuclear targeting sequence, or the anti-HPV16 E7 scFv43M2 with endoplasmic reticulum targeting sequence were delivered by injection followed by electroporation to three different preclinical models using C57/BL6 mice, and their effect on tumor growth was investigated. In the first model, the HPV16+ TC-1 Luc cells were used to implant tumors in mice, and tumor growth was measured by luciferase activity; in the second model, a fourfold number of TC-1 cells was used to obtain more aggressively growing tumors; in the third model, the HPV16+ C3 cells where used to rise tumors in mice. To highlight the scFv possible mechanism of action, H&E and caspase-3 staining of tumor section were performed. Results We showed that both the anti-HPV16 E6 and HPV16 E7 scFvs tested were efficacious in delaying tumor progression in the three experimental models and that their antitumor activity seems to rely on driving tumor cells towards the apoptotic pathway. Conclusion Based on our study, two scFvs have been identified that could represent a safe and effective treatment for the therapy of HPV16-associated lesions. The mechanism underlying the scFv effectiveness appears to be leading cells towards death by apoptosis. Furthermore, the validity of electroporation, a methodology allowed for human treatment, to deliver scFvs to tumors was confirmed.


2010 ◽  
Vol 84 (16) ◽  
pp. 8219-8230 ◽  
Author(s):  
Monika Somberg ◽  
Stefan Schwartz

ABSTRACT Our results presented here demonstrate that the most abundant human papillomavirus type 16 (HPV-16) mRNAs expressing the viral oncogenes E6 and E7 are regulated by cellular ASF/SF2, itself defined as a proto-oncogene and overexpressed in cervical cancer cells. We show that the most frequently used 3′-splice site on the HPV-16 genome, site SA3358, which is used to produce primarily E4, E6, and E7 mRNAs, is regulated by ASF/SF2. Splice site SA3358 is immediately followed by 15 potential binding sites for the splicing factor ASF/SF2. Recombinant ASF/SF2 binds to the cluster of ASF/SF2 sites. Mutational inactivation of all 15 sites abolished splicing to SA3358 and redirected splicing to the downstream-located, late 3′-splice site SA5639. Overexpression of a mutant ASF/SF2 protein that lacks the RS domain, also totally inhibited the usage of SA3358 and redirected splicing to the late 3′-splice site SA5639. The 15 ASF/SF2 binding sites could be replaced by an ASF/SF2-dependent, HIV-1-derived splicing enhancer named GAR. This enhancer was also inhibited by the mutant ASF/SF2 protein that lacks the RS domain. Finally, silencer RNA (siRNA)-mediated knockdown of ASF/SF2 caused a reduction in spliced HPV-16 mRNA levels. Taken together, our results demonstrate that the major HPV-16 3′-splice site SA3358 is dependent on ASF/SF2. SA3358 is used by the most abundantly expressed HPV-16 mRNAs, including those encoding E6 and E7. High levels of ASF/SF2 may therefore be a requirement for progression to cervical cancer. This is supported by our earlier findings that ASF/SF2 is overexpressed in high-grade cervical lesions and cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document