scholarly journals Comparative Analysis of the Capsid Structures of AAVrh.10, AAVrh.39, and AAV8

2019 ◽  
Vol 94 (6) ◽  
Author(s):  
Mario Mietzsch ◽  
Candace Barnes ◽  
Joshua A. Hull ◽  
Paul Chipman ◽  
Jun Xie ◽  
...  

ABSTRACT Adeno-associated viruses (AAVs) from clade E are often used as vectors in gene delivery applications. This clade includes rhesus isolate 10 (AAVrh.10) and 39 (AAVrh.39) which, unlike representative AAV8, are capable of crossing the blood-brain barrier (BBB), thereby enabling the delivery of therapeutic genes to the central nervous system. Here, the capsid structures of AAV8, AAVrh.10 and AAVrh.39 have been determined by cryo-electron microscopy and three-dimensional image reconstruction to 3.08-, 2.75-, and 3.39-Å resolution, respectively, to enable a direct structural comparison. AAVrh.10 and AAVrh.39 are 98% identical in amino acid sequence but only ∼93.5% identical to AAV8. However, the capsid structures of all three viruses are similar, with only minor differences observed in the previously described surface variable regions, suggesting that specific residues S269 and N472, absent in AAV8, may confer the ability to cross the BBB in AAVrh.10 and AAVrh.39. Head-to-head comparison of empty and genome-containing particles showed DNA ordered in the previously described nucleotide-binding pocket, supporting the suggested role of this pocket in DNA packaging for the Dependoparvovirus. The structural characterization of these viruses provides a platform for future vector engineering efforts toward improved gene delivery success with respect to specific tissue targeting, transduction efficiency, antigenicity, or receptor retargeting. IMPORTANCE Recombinant adeno-associated virus vectors (rAAVs), based on AAV8 and AAVrh.10, have been utilized in multiple clinical trials to treat different monogenetic diseases. The closely related AAVrh.39 has also shown promise in vivo. As recently attained for other AAV biologics, e.g., Luxturna and Zolgensma, based on AAV2 and AAV9, respectively, the vectors in this study will likely gain U.S. Food and Drug Administration approval for commercialization in the near future. This study characterized the capsid structures of these clinical vectors at atomic resolution using cryo-electron microscopy and image reconstruction for comparative analysis. The analysis suggested two key residues, S269 and N472, as determinants of BBB crossing for AAVrh.10 and AAVrh.39, a feature utilized for central nervous system delivery of therapeutic genes. The structure information thus provides a platform for engineering to improve receptor retargeting or tissue specificity. These are important challenges in the field that need attention. Capsid structure information also provides knowledge potentially applicable for regulatory product approval.

2014 ◽  
Vol 89 (3) ◽  
pp. 1794-1808 ◽  
Author(s):  
Yu-Shan Tseng ◽  
Brittney L. Gurda ◽  
Paul Chipman ◽  
Robert McKenna ◽  
Sandra Afione ◽  
...  

ABSTRACTThe clinical utility of the adeno-associated virus (AAV) gene delivery system has been validated by the regulatory approval of an AAV serotype 1 (AAV1) vector for the treatment of lipoprotein lipase deficiency. However, neutralization from preexisting antibodies is detrimental to AAV transduction efficiency. Hence, mapping of AAV antigenic sites and engineering of neutralization-escaping vectors are important for improving clinical efficacy. We report the structures of four AAV-monoclonal antibody fragment complexes, AAV1-ADK1a, AAV1-ADK1b, AAV5-ADK5a, and AAV5-ADK5b, determined by cryo-electron microscopy and image reconstruction to a resolution of ∼11 to 12 Å. Pseudoatomic modeling mapped the ADK1a epitope to the protrusions surrounding the icosahedral 3-fold axis and the ADK1b and ADK5a epitopes, which overlap, to the wall between depressions at the 2- and 5-fold axes (2/5-fold wall), and the ADK5b epitope spans both the 5-fold axis-facing wall of the 3-fold protrusion and portions of the 2/5-fold wall of the capsid. Combined with the six antigenic sites previously elucidated for different AAV serotypes through structural approaches, including AAV1 and AAV5, this study identified two common AAV epitopes: one on the 3-fold protrusions and one on the 2/5-fold wall. These epitopes coincide with regions with the highest sequence and structure diversity between AAV serotypes and correspond to regions determining receptor recognition and transduction phenotypes. Significantly, these locations overlap the two dominant epitopes reported for autonomous parvoviruses. Thus, rather than the amino acid sequence alone, the antigenic sites of parvoviruses appear to be dictated by structural features evolved to enable specific infectious functions.IMPORTANCEThe adeno-associated viruses (AAVs) are promising vectors forin vivotherapeutic gene delivery, with more than 20 years of intense research now realized in a number of successful human clinical trials that report therapeutic efficacy. However, a large percentage of the population has preexisting AAV capsid antibodies and therefore must be excluded from clinical trials or vector readministration. This report represents our continuing efforts to understand the antigenic structure of the AAVs, specifically, to obtain a picture of “polyclonal” reactivity as is the situation in humans. It describes the structures of four AAV-antibody complexes determined by cryo-electron microscopy and image reconstruction, increasing the number of mapped epitopes to four and three, respectively, for AAV1 and AAV5, two vectors currently in clinical trials. The results presented provide information essential for generating antigenic escape vectors to overcome a critical challenge remaining in the optimization of this highly promising vector delivery system.


Author(s):  
J.N. Turner ◽  
M. Siemens ◽  
D. Szarowski ◽  
D.N. Collins

A classic preparation of central nervous system tissue (CNS) is the Golgi procedure popularized by Cajal. The method is partially specific as only a few cells are impregnated with silver chromate usualy after osmium post fixation. Samples are observable by light (LM) or electron microscopy (EM). However, the impregnation is often so dense that structures are masked in EM, and the osmium background may be undesirable in LM. Gold toning is used for a subtle but high contrast EM preparation, and osmium can be omitted for LM. We are investigating these preparations as part of a study to develop correlative LM and EM (particularly HVEM) methodologies in neurobiology. Confocal light microscopy is particularly useful as the impregnated cells have extensive three-dimensional structure in tissue samples from one to several hundred micrometers thick. Boyde has observed similar preparations in the tandem scanning reflected light microscope (TSRLM).


2000 ◽  
Vol 853 (2) ◽  
pp. 245-268 ◽  
Author(s):  
Julia Serrano ◽  
L.Otto Uttenthal ◽  
Alfredo Martı́nez ◽  
A.Patricia Fernández ◽  
Javier Martı́nez de Velasco ◽  
...  

2014 ◽  
Vol 6 (9) ◽  
pp. 855-861 ◽  
Author(s):  
A. R. Fernandes ◽  
D. M. Chari

We describe a multicellular neural model to study nanoparticle uptake and gene delivery, using stem cell derived cell populations.


Sign in / Sign up

Export Citation Format

Share Document