scholarly journals Contrasting Roles of the PD-1 Signaling Pathway in Dendritic Cell-Mediated Induction and Regulation of HIV-1-Specific Effector T Cell Functions

2018 ◽  
Vol 93 (5) ◽  
Author(s):  
Tatiana M. Garcia-Bates ◽  
Mariana L. Palma ◽  
Chengli Shen ◽  
Andrea Gambotto ◽  
Bernard J. C. Macatangay ◽  
...  

ABSTRACT Eliciting highly functional CD8+ cytotoxic T lymphocyte (CTL) responses against a broad range of epitopes will likely be required for immunotherapeutic control of HIV-1 infection. However, the combination of CTL exhaustion and the ability of HIV-1 to rapidly establish CTL escape variants presents major hurdles toward this goal. Our previous work highlighted the use of monocyte-derived, mature, high-interleukin-12 (IL-12)-producing type 1 polarized dendritic cells (MDC1) to selectively induce more potent effector CTLs derived from naive, rather than memory, CD8+ T cell precursors isolated from HIV-1-positive participants in the Multicenter AIDS Cohort Study. In this study, we report that these highly stimulatory antigen-presenting cells also express enhanced levels of the coinhibitory molecule programmed cell death ligand 1 (PD-L1), the ligand for PD-1, which is further upregulated upon subsequent stimulation with the CD4+ T helper cell-derived factor CD40L. Interestingly, blocking the PD-1 signaling pathway during MDC1 induction of HIV-1-specific CTL responses inhibited the priming, activation, and differentiation of naive CD8+ T cells into effector T cells expressing high levels of T-box transcription factor (T-bethi) and eomesodermin (Eomes+). In contrast, PD-1 blockade enhanced the overall magnitude of memory HIV-specific CTL responses and reversed the exhausted memory phenotype from a T-betlow/Eomes+ to a T-bethi/Eomes+ phenotype. These results indicate that the PD-L1/PD-1 signaling pathway has a previously unappreciated dual role in the induction and regulation of HIV-1-specific CTL immunity, which is greatly determined by the context and differentiation stage of the responsive CD8+ T cells. IMPORTANCE Targeting the PD-1/PD-L1 immune checkpoint axis with signaling inhibitors has proven to be a powerful immunotherapeutic strategy to enhance the functional quality and survival of existing antigen-specific effector T cells. However, our study demonstrates that the context and timing of PD-1 signaling in T cells greatly impact the outcome of the effector response. In particular, we show that PD-1 activation plays a positive role during the DC-mediated initiation stage of the primary T cell response, while it serves as an inhibitory mechanism during the effector phase of the response. Therefore, caution should be taken in the design of therapies that include targeting of the PD-1/PD-L1 signaling pathway in order to avoid potential negative impacts on the induction of de novo T cell responses.

2021 ◽  
Author(s):  
Catherine Riou ◽  
Elsa du Bruyn ◽  
Cari Stek ◽  
Remy Daroowala ◽  
Rene T. Goliath ◽  
...  

SUMMARYT cells are involved in control of COVID-19, but limited knowledge is available on the relationship between antigen-specific T cell response and disease severity. Here, we assessed the magnitude, function and phenotype of SARS-CoV-2-specific CD4 T cells in 95 hospitalized COVID-19 patients (38 of them being HIV-1 and/or tuberculosis (TB) co-infected) and 38 non-COVID-19 patients, using flow cytometry. We showed that SARS-CoV-2-specific CD4 T cell attributes, rather than magnitude, associates with disease severity, with severe disease being characterized by poor polyfunctional potential, reduced proliferation capacity and enhanced HLA-DR expression. Moreover, HIV-1 and TB co-infection skewed the SARS-CoV-2 T cell response. HIV-1 mediated CD4 T cell depletion associated with suboptimal T cell and humoral immune responses to SARS-CoV-2; and a decrease in the polyfunctional capacity of SARS-CoV-2-specific CD4 T cells was observed in COVID-19 patients with active TB. Our results also revealed that COVID-19 patients displayed reduced frequency of Mtb-specific CD4 T cells, with possible implications for TB disease progression. There results corroborate the important role of SARS-CoV-2-specific T cells in COVID-19 pathogenesis and support the concept of altered T cell functions in patients with severe disease.


2007 ◽  
Vol 81 (11) ◽  
pp. 5759-5765 ◽  
Author(s):  
John W. Northfield ◽  
Christopher P. Loo ◽  
Jason D. Barbour ◽  
Gerald Spotts ◽  
Frederick M. Hecht ◽  
...  

ABSTRACT CD8+ T cells are believed to play an important role in the control of human immunodeficiency virus type 1 (HIV-1) infection. However, despite intensive efforts, it has not been possible to consistently link the overall magnitude of the CD8+ T-cell response with control of HIV-1. Here, we have investigated the association of different CD8+ memory T-cell subsets responding to HIV-1 in early infection with future control of HIV-1 viremia. Our results demonstrate that both a larger proportion and an absolute number of HIV-1-specific CD8+ CCR7− CD45RA+ effector memory T cells (TEMRA cells) were associated with a lower future viral load set point. In contrast, a larger absolute number of HIV-1-specific CD8+ CCR7− CD45RA− effector memory T cells (TEM) was not related to the viral load set point. Overall, the findings suggest that CD8+ TEMRA cells have superior antiviral activity and indicate that both qualitative and quantitative aspects of the CD8+ T-cell response need to be considered when defining the characteristics of protective immunity to HIV-1.


2003 ◽  
Vol 198 (11) ◽  
pp. 1753-1757 ◽  
Author(s):  
Madhav V. Dhodapkar ◽  
Joseph Krasovsky ◽  
Keren Osman ◽  
Matthew D. Geller

Most approaches targeting the immune system against tumors have focused on patients with established tumors. However, whether the immune system can recognize preneoplastic stages of human cancer is not known. Here we show that patients with preneoplastic gammopathy mount a vigorous T cell response to autologous premalignant cells. This preneoplasia-specific CD4+ and CD8+ T cell response is detected in freshly isolated T cells from the BM. T cells from myeloma marrow lack this tumor-specific rapid effector function. These data provide direct evidence for tumor specific immune recognition in human preneoplasia and suggest a possible role for the immune system in influencing the early growth of transformed cells, long before the development of clinical cancer.


Author(s):  
Manman Dai ◽  
Li Zhao ◽  
Ziwei Li ◽  
Xiaobo Li ◽  
Bowen You ◽  
...  

It is well known that chicken CD8+ T cell response is vital to clearing viral infections. However, the differences between T cell subsets expressing CD8 receptors in chicken peripheral blood mononuclear cells (PBMCs) have not been compared. Herein, we used Smart-Seq2 scRNA-seq technology to characterize the difference of chicken CD8high+, CD8high αα+, CD8high αβ+, CD8medium+, and CD4+CD8low+ T cell subsets from PBMCs of avian leukosis virus subgroup J (ALV-J)-infected chickens. Weighted gene co-expression network analysis (WGCNA) and Trend analysis revealed that genes enriched in the “Cytokine–cytokine receptor interaction” pathway were most highly expressed in the CD8high αα+ T cell population, especially T cell activation or response-related genes including CD40LG, IL2RA, IL2RB, IL17A, IL1R1, TNFRSF25, and TNFRSF11, suggesting that CD8high αα+ T cells rather than other CD8 subpopulations were more responsive to ALV-J infections. On the other hand, genes involved in the “FoxO signaling pathway” and “TGF-beta signaling pathway” were most highly expressed in the CD4+CD8low+ (CD8low+) T cell population and the function of CD4+CD8low+ T cells may play roles in negatively regulating the functions of T cells based on the high expression of CCND1, ROCK1, FOXO1, FOXO3, TNFRSF18, and TNFRSF21. The selected gene expressions in CD8+ T cells and CD4+CD8low+ double-positive T cells confirmed by qRT-PCR matched the Smart-Seq2 data, indicating the reliability of the smart-seq results. The high expressions of Granzyme K, Granzyme A, and CCL5 indicated the positive response of CD8+ T cells. Conversely, CD4+CD8+ T cells may have the suppressor activity based on the low expression of activation molecules but high expression of T cell activity suppressor genes. These findings verified the heterogeneity and transcriptional differences of T cells expressing CD8 receptors in chicken PBMCs.


2019 ◽  
Vol 20 (4) ◽  
pp. 514-514
Author(s):  
Giorgio Napolitani ◽  
Prathiba Kurupati ◽  
Karen Wei Weng Teng ◽  
Malick M. Gibani ◽  
Margarida Rei ◽  
...  

2008 ◽  
Vol 82 (16) ◽  
pp. 8161-8171 ◽  
Author(s):  
Kara S. Cox ◽  
James H. Clair ◽  
Michael T. Prokop ◽  
Kara J. Sykes ◽  
Sheri A. Dubey ◽  
...  

ABSTRACT Results from Merck's phase II adenovirus type 5 (Ad5) gag/pol/nef test-of-concept trial showed that the vaccine lacked efficacy against human immunodeficiency virus (HIV) infection in a high-risk population. Among the many questions to be explored following this outcome are whether (i) the Ad5 vaccine induced the quality of T-cell responses necessary for efficacy and (ii) the lack of efficacy in the Ad5 vaccine can be generalized to other vector approaches intended to induce HIV type 1 (HIV-1)-specific T-cell responses. Here we present a comprehensive evaluation of the T-cell response profiles from cohorts of clinical trial subjects who received the HIV CAM-1 gag insert delivered by either a regimen with DNA priming followed by Ad5 boosting (n = 50) or a homologous Ad5/Ad5 prime-boost regimen (n = 70). The samples were tested using a statistically qualified nine-color intracellular cytokine staining assay measuring interleukin-2 (IL-2), tumor necrosis factor alpha, macrophage inflammatory protein 1β, and gamma interferon production and expression of CD107a. Both vaccine regimens induced CD4+ and CD8+ HIV gag-specific T-cell responses which variably expressed several intracellular markers. Several trends were observed in which the frequencies of HIV-1-specific CD4+ T cells and IL-2 production from antigen-specific CD8+ T cells in the DNA/Ad5 cohort were more pronounced than in the Ad5/Ad5 cohort. Implications of these results for future vaccine development will be discussed.


Blood ◽  
2000 ◽  
Vol 96 (4) ◽  
pp. 1327-1333 ◽  
Author(s):  
Andreas Gruber ◽  
June Kan-Mitchell ◽  
Kelli L. Kuhen ◽  
Tetsu Mukai ◽  
Flossie Wong-Staal

Abstract Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1ΔEN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34+ precursors of DCs. Here we extended these findings with HIV-1ΔEN to highly differentiated human DCs derived in culture from circulating monocytes (DCs). In addition, a new vector derived from HIV-1ΔEN but further deleted in its remaining accessory genes vif, vpr, and vpu(HIV-1ΔEN V3) was also tested. Both vectors efficiently transduced DCs. Transduction of DCs did not significantly alter their viability or their immunophenotype when compared with untransduced DCs. Furthermore, the phagocytic potential of immature DCs, as well as their ability to differentiate into mature DCs capable of stimulating T-cell proliferation, was not affected. Finally, DCs transduced by the HIV-1ΔEN vector were able to elicit a primary antiviral cytotoxic T-cell response in autologous CD8 T cells. These results suggest that HIV-1–based vectors expressing viral antigens may be useful for in vivo active immunization as well as ex vivo priming of cytotoxic T cells for adoptive T-cell therapy.


2010 ◽  
Vol 84 (14) ◽  
pp. 7151-7160 ◽  
Author(s):  
Yuka Kawashima ◽  
Nozomi Kuse ◽  
Hiroyuki Gatanaga ◽  
Takuya Naruto ◽  
Mamoru Fujiwara ◽  
...  

ABSTRACT HLA-B*51 alleles are reported to be associated with slow disease progression to AIDS, but the mechanism underlying this association is still unclear. In the present study, we analyzed the effect of HLA-B*5101 on clinical outcome for Japanese hemophiliacs who had been infected with HIV-1 before 1985 and had been recruited in 1998 for this study. HLA-B*5101+ hemophiliacs exhibited significantly slow progression. The analysis of HLA-B*5101-restricted HIV-1-specific cytotoxic T-lymphocyte (CTL) responses to 4 HLA-B*-restricted epitopes in 10 antiretroviral-therapy (ART)-free HLA-B*5101+ hemophiliacs showed that the frequency of Pol283-8-specific CD8+ T cells was inversely correlated with the viral load, whereas the frequencies of CD8+ T cells specific for 3 other epitopes were positively correlated with the viral load. The HLA-B*5101+ hemophiliacs whose HIV-1 replication had been controlled for approximately 25 years had HIV-1 possessing the wild-type Pol283-8 sequence or the Pol283-8V mutant, which does not critically affect T-cell recognition, whereas other HLA-B*5101+ hemophiliacs had HIV-1 with escape mutations in this epitope. The results suggest that the control of HIV-1 over approximately 25 years in HLA-B*5101-positive hemophiliacs is associated with a Pol283-8-specific CD8+ T-cell response and that lack of control of HIV-1 is associated with the appearance of Pol283-8-specific escape mutants.


2009 ◽  
Vol 29 (21) ◽  
pp. 5952-5962 ◽  
Author(s):  
Caryll Waugh ◽  
Linda Sinclair ◽  
David Finlay ◽  
Jose R. Bayascas ◽  
Doreen Cantrell

ABSTRACT The present study explored the consequences of phosphoinositide (3,4,5)-triphosphate [PI(3,4,5)P3] binding to the pleckstrin homology (PH) domain of the serine/threonine kinase 3-phosphoinositide-dependent kinase 1 (PDK1). The salient finding is that PDK1 directly transduces the PI(3,4,5)P3 signaling that determines T-cell trafficking programs but not T-cell growth and proliferation. The integrity of the PDK1 PH domain thus is not required for PDK1 catalytic activity or to support cell survival and the proliferation of thymic and peripheral T cells. However, a PDK1 mutant that cannot bind PI(3,4,5)P3 cannot trigger the signals that terminate the expression of the transcription factor KLF2 in activated T cells and cannot switch the chemokine and adhesion receptor profile of naïve T cells to the profile of effector T cells. The PDK1 PH domain also is required for the maximal activation of Akt/protein kinase B (PKB) and for the maximal phosphorylation and inactivation of Foxo family transcription factors in T cells. PI(3,4,5)P3 binding to PDK1 and the strength of PKB activity thus can dictate the nature of the T-cell response. Low levels of PKB activity can be sufficient for T-cell proliferation but insufficient to initiate the migratory program of effector T cells.


Sign in / Sign up

Export Citation Format

Share Document