Production of high-titer helper virus-free retroviral vectors by cocultivation of packaging cells with different host ranges.

1991 ◽  
Vol 65 (7) ◽  
pp. 3887-3890 ◽  
Author(s):  
C M Lynch ◽  
A D Miller
Author(s):  
Hiroko Baba ◽  
Hideki Hida ◽  
Yuji Kodama ◽  
Cha-Gyun Jung ◽  
Chun-Zhen Wu ◽  
...  

Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 43-50 ◽  
Author(s):  
MH Finer ◽  
TJ Dull ◽  
L Qin ◽  
D Farson ◽  
MR Roberts

Abstract We describe a novel retroviral packaging system in which high titer amphotropic retrovirus was produced without the need to generate stable producer clones. kat expression vectors, which produce high levels of retroviral vector transcripts and retroviral packaging functions, were transfected into 293 cells followed by virus harvest 48 hours posttransfection. Viral titers as high as 3.8 proviral copies/cell/mL of frozen supernatant in 3T3 cells were obtained, 10- to 50-fold greater than transient viral titers reported using 3T3-based retroviral packaging lines. Cocultivation of primary human CD8+ T lymphocytes after transient transfection of 293 cells with kat plasmids resulted in transduction efficiencies of 10% to 40%, 5- to 10-fold greater compared to cocultivation with a high titer PA317 producer clone and significantly greater than previously reported results for transduction of primary human T lymphocytes with retroviral vectors. Virus produced using the kat system was shown to be free of detectable replication competent retrovirus by an extended provirus mobilization assay, demonstrating that this system is as safe as currently available stable packaging lines. The kat virus production system should be of general use for the rapid production of high titer viral supernatants, as well as for high-efficiency transduction hematopoietic cell types refractory to retroviral transduction.


Blood ◽  
1990 ◽  
Vol 75 (8) ◽  
pp. 1733-1741 ◽  
Author(s):  
M Kaleko ◽  
JV Garcia ◽  
WR Osborne ◽  
AD Miller

Abstract A high titer retroviral vector was used to transfer a human adenosine deaminase (h-ADA) cDNA into murine bone marrow cells in vitro. The h- ADA cDNA was linked to the retroviral promoter, and the vector also contained a neomycin phosphotransferase gene as a selectable marker. Infected marrow was transplanted into syngeneic W/Wv recipients, and h- ADA expression was monitored for 5.5 months. Several weeks after transplantation, h-ADA was detected in the erythrocytes of all nine recipients, eight of which expressed levels equal to the endogenous enzyme. This level of expression persisted in two of six surviving mice, while expression in three others stabilized at lower, but readily detectable, levels. Only one mouse had no detectable h-ADA after 5.5 months. Vector DNA sequences with common integration sites were found in hematopoietic and lymphoid tissues of the mice at 5.5 months, providing evidence that hematopoietic stem cells had been infected. Furthermore, all mice transplanted with marrow that had been selected in G418 before infusion had multiple vector copies per genome. While this category included the two highest h-ADA expressors, it also included the negative mouse. Thus, multiple copies of the vector were not sufficient to guarantee long-term h-ADA expression. Mice were monitored for “helper virus” infections with an assay designed to detect a wide range of replication-competent retroviruses, including those endogenous to the mouse genome. No helper virus was detected in the two highest h-ADA expressors, ruling out helper-assisted vector spread as a cause of the high h-ADA expression. These results help provide a foundation for the development of somatic gene therapy techniques to be used in the treatment of human disease.


2005 ◽  
Vol 79 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Neal S. Van Hoeven ◽  
A. Dusty Miller

ABSTRACT Enzootic nasal tumor virus (ENTV) and jaagsiekte sheep retrovirus (JSRV) are closely related retroviruses that cause epithelial cancers of the respiratory tract in sheep and goats. Both viruses use the glycosylphosphatidylinositol (GPI)-anchored cell surface protein hyaluronidase 2 (Hyal2) as a receptor for cell entry, and entry is mediated by the envelope (Env) proteins encoded by these viruses. Retroviral vectors bearing JSRV Env can transduce cells from a wide range of species, with the exception of rodent cells. Because of the low titer of vectors bearing ENTV Env, it has been difficult to determine the tropism of ENTV vectors, which appeared to transduce cells from sheep and humans only. Here we have developed high-titer ENTV packaging cells and confirm that ENTV has a restricted host range compared to that of JSRV. Most cells that are not transduced by JSRV or ENTV vectors can be made susceptible following expression of human Hyal2 on the cells. However, five rat cell lines from different rat strains and different tissues that were engineered to express human Hyal2 were still only poorly infected by ENTV vectors, even though the ENTV Env protein could bind well to human Hyal2 expressed on four of these cell lines. These results indicate the possibility of a coreceptor requirement for these viruses.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3539-3539
Author(s):  
Johannes C.M. Van der Loo ◽  
William Swaney ◽  
Diana Nordling ◽  
Axel Schambach ◽  
Christopher Baum ◽  
...  

Abstract The need for gamma-retroviral vectors with self-inactivating (SIN) long terminal repeats for clinical trials has prompted a shift in the method with which large scale GMP-grade vectors are produced, from the use of stable producer lines to transient transfection-based techniques. The main challenge of instituting this methodology was to develop SIN retrovirus vectors that produced high amounts of genomic vector RNA in packaging cells, and to design scalable processes for closed system culture, transfection and virus harvest. Using improved expression plasmids, the Vector Production Facility, an academic GMP manufacturing laboratory that is part of the Translational Cores at Cincinnati Children’s Hospital, has developed such a method based on the Wave Bioreactor® production platform. In brief, cells from a certified 293T master cell bank are expanded, mixed with transfection reagents, and pumped into a 2, 10 or 20 Liter Wave Cell Bag containing FibraCel® discs. Cells are cultured in DMEM with GlutaMax® and 10% FBS at 37°C, 5% CO2 at a rocking speed of 22 rpm and 6° angle. At 16–20 hrs post-transfection, the media is changed; virus is harvested at 12-hour intervals, filtered through a leukocyte reduction filter, aliquoted into Cryocyte freezing containers, and frozen at or below −70°C. Several processing parameters, including the confluency of cells harvested prior to transfection, the timing of transfection, the amount of plasmid DNA, exposure of cells to PBS/TrypLESelect, and the timing of the media change post-transfection affected vector titer. Mixing cells with plasmid and transfection mixture prior to seeding onto FibraCel, as compared to transfecting cells 1-day post-seeding (as is standard when using tissue culture plastic) increased the titer from 104 to 4 × 105 IU/mL. Similarly, increasing the amount of plasmid DNA per mL from 4.6 to 9.2 μg doubled the titer in the Wave, while it reduced titer by 20–40% in tissue culture flasks (Fig. 1). Using an optimized protocol, six cGMP-grade SIN gamma-retroviral vectors have now been produced in support of the FDA’s National Toxicology Program (NTP), with unconcentrated vector titers ranging from 1 × 106 to as high as 4 × 107 IU/mL. Using similar processing, we have produced a large scale SIN gamma-retroviral vector (GALV pseudotyped) for an international X-linked SCID trial with average unconcentrated titers of 106 IU/mL in all viral harvests. In summary, the process developed at the Cincinnati Children’s Hospital Vector Production Facility allows for large scale closed-system production of high-titer retroviral vectors for clinical trials using transient transfection. Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2468-2468
Author(s):  
Juan F Vera ◽  
Gianpietro Dotti ◽  
John Wilson ◽  
Malcolm K. Brenner

Abstract Abstract 2468 Poster Board II-445 One impediment to the successful development of human therapies using genetically modified hemopoietic cells is the cost and complexity of vector manufacture, which limits the number of studies that can be accomplished within a reasonable time and cost. Retroviral transduction is a commonly used method for such ex vivo genetic modification and usually requires large volumes of retroviral supernatants, the titers of which are low compared with other viral vectors. We now describe the use of a novel culture device, called a Concentrated Retrovirus Expansion Device (CRED), which was developed by Wilson Wolf Manufacturing. This CRED is similar in external appearance and shape to other conventional roller bottles, and thus can be accommodated by standard roller racks. However the presence of an internal dialysis membrane allows the virus particles to become concentrated in the cell compartment, while the nutrient compartment is separated but easily accessible and can retain up to 250 ml of cell culture media without causing virus dilution. This CRED has a surface area of 600cm2 in the cell compartment, which, due to diffusion across the dialysis membrane, requires only 10 ml of media for cell survival, a tenfold lower requirement than for an equivalent area in a traditional cell factory or roller bottle. To test the potency and stability of retroviral vectors produced in the CRED we cultured a clinical grade PG-13 producer cell line that produces the retroviral vector SFG-CAR-CD19/CD28/Z, which encodes a chimeric antigen receptor directed to the CD19 antigen (CD19-CAR). This vector is used in a current clinical protocol to transduce T cells for use in patients with advanced CD19+ B cell malignancies. We compared our standard procedure for retrovirus production (using a T175 flask) and 30 ml of IMDM against the CRED using 10ml of IMDM. Retroviral supernatant was harvested and frozen daily once cell confluence was attained (days 4-5 for the CRED and days 2-3 for the T175). Subsequently, to enumerate viable viral particles, 1×104 HeLa cells were seeded in a 6 well plate and after 24 hrs were transduced with the harvested retroviral supernatant using volumes ranging from 10-300ml in the presence of 1ml of Polybrene (10ug/ul Millipore). Six days later the cultures were evaluated by flow cytometric analysis to assess transduction efficiency, using a monoclonal antibody that recognized the CH2CH3 sequence of the CAR-CD19/CD28/Z transgenic protein. The transduction efficiency of virus harvested from the CRED was at least 4 times greater than that of the cells transduced with supernatant prepared using with the conventional method; 10ul (7.5%±4.5% vs 2.5%±0.28%), 20ul (11.9%±6.3% vs 4.9%±0.1%), 50ul (25.9%±7.4% vs 7.9%±0.9%), 100ul (45.2%±11.5% vs 9.3%±0.6%), 200ul (75.15%±15.6% vs 16.9%±1.5%), 300ul (85.7%±8.6% vs 21.4±1.8%) (n=4 independent experiments). To ensure that the CRED-produced vector was stable we exposed the harvested supernatant to 6 consecutive freeze-thaw cycles, and compared titers before and after each. We initially obtained 86.8% transduction efficiency of HeLa cells that progressively but slowly declined after each cycle (82.4%, then 80.2%, 80%, 68.7%, 60.9% and 55.5%). Hence the CRED can produce large quantities of high titer retrovirus without media change. This concentrated virus is sufficiently stable to resist freeze thaw cycles and occupies 10 fold less storage space than conventional reagents. This combination of features should enable this scalable production technique to facilitate clinical studies of retroviral vectors. Figure 1: Cross-sectional view of the CRED, demonstrating how cells can be cultured in a very small volume of media without losing the ability to receive a virtually unlimited supply of nutrients. Figure 1:. Cross-sectional view of the CRED, demonstrating how cells can be cultured in a very small volume of media without losing the ability to receive a virtually unlimited supply of nutrients. Disclosures: Wilson: Wilson Wolf manufacturing: Equity Ownership.


2010 ◽  
Vol 84 (13) ◽  
pp. 6626-6635 ◽  
Author(s):  
Julia D. Suerth ◽  
Tobias Maetzig ◽  
Melanie Galla ◽  
Christopher Baum ◽  
Axel Schambach

ABSTRACT Accidental insertional activation of proto-oncogenes and potential vector mobilization pose serious challenges for human gene therapy using retroviral vectors. Comparative analyses of integration sites of different retroviral vectors have elucidated distinct target site preferences, highlighting vectors based on the alpharetrovirus Rous sarcoma virus (RSV) as those with the most neutral integration spectrum. To date, alpharetroviral vector systems are based mainly on single constructs containing viral coding sequences and intact long terminal repeats (LTR). Even though they are considered to be replication incompetent in mammalian cells, the transfer of intact viral genomes is unacceptable for clinical applications, due to the risk of vector mobilization and the potentially immunogenic expression of viral proteins, which we minimized by setting up a split-packaging system expressing the necessary viral proteins in trans. Moreover, intact LTRs containing transcriptional elements are capable of activating cellular genes. By removing most of these transcriptional elements, we were able to generate a self-inactivating (SIN) alpharetroviral vector, whose LTR transcriptional activity is strongly reduced and whose transgene expression can be driven by an internal promoter of choice. Codon optimization of the alpharetroviral Gag/Pol expression construct and further optimization steps allowed the production of high-titer self-inactivating vector particles in human cells. We demonstrate proof of principle for the versatility of alpharetroviral SIN vectors for the genetic modification of murine and human hematopoietic cells at a low multiplicity of infection.


2003 ◽  
Vol 77 (14) ◽  
pp. 7830-7842 ◽  
Author(s):  
Astrid Schwantes ◽  
Uwe Truyen ◽  
Joachim Weikel ◽  
Christian Weiss ◽  
Martin Löchelt

ABSTRACT In order to define the potential and applicability of replication-competent foamy virus-based vaccine vectors, recombinant feline foamy virus (FFV) vectors encoding defined segments of the feline calicivirus (FCV) capsid protein E domain were constructed. In cell cultures, these FFV-FCV vectors efficiently transduced and expressed a hybrid fusion protein consisting of the essential FFV Bet protein and the attached FCV E domains. The stability of the vectors in vitro was inversely correlated to the size of the heterologous insert. The deletion of a part of the FFV U3 sequence in these FFV-FCV vectors did not interfere with replication and titer in cell cultures but increased the genetic stability of the hybrid vectors. Selected chimeric vectors were injected into immunocompetent cats and persisted in the transduced host concomitant with a strong and specific humoral immune response against vector components. In a substantial number of cats, antibodies directed against the FCV E domain were induced by the FFV-FCV vectors, but no FCV-neutralizing activities were detectable in vitro. When the vaccinated cats were challenged with a high-titer FCV dose, sterile immunity was not induced by any of the hybrid FFV-FCV vectors. However, the FFV-FCV vector with a truncated U3 region of the long terminal repeat promoter significantly reduced the duration of FCV shedding after challenge and suppressed the appearance of FCV-specific ulcers. Possible mechanisms contributing to the partial protection will be discussed.


Sign in / Sign up

Export Citation Format

Share Document