Long-term replication of Sendai virus defective interfering particle nucleocapsids in stable helper cell lines.

1994 ◽  
Vol 68 (12) ◽  
pp. 8413-8417 ◽  
Author(s):  
W Willenbrink ◽  
W J Neubert
2021 ◽  
Vol 22 (8) ◽  
pp. 4250
Author(s):  
Kateřina Jáklová ◽  
Tereza Feglarová ◽  
Simona Rex ◽  
Zbyněk Heger ◽  
Tomáš Eckschlager ◽  
...  

A tyrosine kinase inhibitor, vandetanib (Van), is an anticancer drug affecting the signaling of VEGFR, EGFR and RET protooncogenes. Van is primarily used for the treatment of advanced or metastatic medullary thyroid cancer; however, its usage is significantly limited by side effects, particularly cardiotoxicity. One approach to minimize them is the encapsulation or binding of Van in- or onto a suitable carrier, allowing targeted delivery to tumor tissue. Herein, we constructed a nanocarrier based on apoferritin associated with Van (ApoVan). Based on the characteristics obtained by analyzing the average size, the surface ζ-potential and the polydispersive index, ApoVan nanoparticles exhibit long-term stability and maintain their morphology. Experiments have shown that ApoVan complex is relatively stable during storage. It was found that Van is gradually released from its ApoVan form into the neutral environment (pH 7.4) as well as into the acidic environment (pH 6.5). The effect of free Van and ApoVan on neuroblastoma and medullary thyroid carcinoma cell lines revealed that both forms were toxic in both used cell lines, and minimal differences between ApoVan and Van were observed. Thus, we assume that Van might not be encapsulated into the cavity of apoferritin, but instead only binds to its surface.


1981 ◽  
Vol 49 (1) ◽  
pp. 87-97
Author(s):  
D. Rohme

The dose response of Sendai virus-induced cell fusion was studied in 10 mammalian cell lines, comprising 5 continuous and 5 diploid cell lines originating from 5 species. The extent of fusion was calculated using a parameter directly proportional to the number of fusion events (t-parameter). At lower levels of fusion the dose response was found to be based on the same simple kinetic rules in all cell lines and was defined by the formula: t = FS. FAU/(I + FS. FAU), where FS (fusion sensitivity) is a cell-specific constant of the fusion rate and FAU (fusion activity units) is the virus dose. The FS potential of a cell line was determined as the linear regression coefficient of the fusion index (t/(I - t)) on the virus dose. At higher levels of fusion, when the fusion extent reached cell-line-specific maximal levels, the dose response was not as uniform. In general, and particularly in the cases of the diploid cell lines, these maximal levels were directly proportional to the FS potentials. Thus, it was concluded that the FS potential is the basic quantitative feature, which expresses the cellular fusion efficiency. The fact that FS varied extensively between cell lines, but at the same time apparently followed certain patterns (being higher in continuous compared to diploid cell lines and being related to the species of origin of the cells), emphasizes it biological significance as well as its possible usefulness in studies of the efficiency of various molecular interactions in the cell membrane/cytoskeleton system.


2019 ◽  
Author(s):  
Michael Gock ◽  
Marcel Kordt ◽  
Stephanie Matschos ◽  
Christina S. Mullins ◽  
Michael Linnebacher

Abstract Background Several DNA viruses are highly suspicious to have oncogenic effects in humans. This study investigates the presence of potentially oncogenic viruses such as SV40, JCV, BKV and EBV in patient-derived colorectal carcinoma (CRC) cells typifying all molecular subtypes of CRC. Methods Sample material (gDNA and cDNA) of a total of 49 patient-individual CRC cell lines and corresponding primary material from 11 patients, including normal, tumor-derived and metastasis-derived tissue were analyzed for sequences of SV40, JVC, BKV and EBV using endpoint PCR. In addition, the susceptibility of CRC cells to JCV and BKV was examined using a long-term cultivation approach of patient-individual cells in the presence of viruses. Results No virus-specific sequences could be detected in all specimens. Likewise, no morphological changes were observed and no evidence for viral infection or integration could be provided after long term CRC cell cultivation in presence of viral particles. Conclusions In summary, the presented data suggest that there is no direct correlation between tumorigenesis and viral load and consequently no evidence for a functional role of the DNA viruses included into this analysis in CRC development.


2004 ◽  
Vol 24 (16) ◽  
pp. 7003-7014 ◽  
Author(s):  
John C. Wilkinson ◽  
Enrique Cepero ◽  
Lawrence H. Boise ◽  
Colin S. Duckett

ABSTRACT X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-xL. Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-xL-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.


2008 ◽  
Vol 89 (2) ◽  
pp. 432-443 ◽  
Author(s):  
Maarit Sillanpää ◽  
Pasi Kaukinen ◽  
Krister Melén ◽  
Ilkka Julkunen

The hepatitis C virus (HCV) non-structural (NS) 3/4A protein complex inhibits the retinoic acid inducible gene I (RIG-I) pathway by proteolytically cleaving mitochondria-associated CARD-containing adaptor protein Cardif, and this leads to reduced production of beta interferon (IFN-β). This study examined the expression of CCL5 (regulated upon activation, normal T-cell expressed and secreted, or RANTES), CXCL8 (interleukin 8) and CXCL10 (IFN-γ-activated protein 10, or IP-10) chemokine genes in osteosarcoma cell lines that inducibly expressed NS3/4A, NS4B, core-E1-E2-p7 and the entire HCV polyprotein. Sendai virus (SeV)-induced production of IFN-β, CCL5, CXCL8 and CXCL10 was downregulated by the NS3/4A protein complex and by the full-length HCV polyprotein. Expression of NS3/4A and the HCV polyprotein reduced the binding of interferon regulatory factors (IRFs) 1 and 3 and, to a lesser extent, nuclear factor (NF)-κB (p65/p50) to their respective binding elements on the CXCL10 promoter during SeV infection. Furthermore, binding of IRF1 and IRF3 to the interferon-stimulated response element-like element, and of c-Jun and phosphorylated c-Jun to the activator protein 1 element of the CXCL8 promoter, was reduced when NS3/4A and the HCV polyprotein were expressed. In cell lines expressing NS3/4A and the HCV polyprotein, the subcellular localization of mitochondria was changed, and this was kinetically associated with the partial degradation of endogenous Cardif. These results indicate that NS3/4A alone or as part of the HCV polyprotein disturbs the expression of IRF1- and IRF3-regulated genes, as well as affecting mitogen-activated protein kinase kinase- and NF-κB-regulated genes.


Sign in / Sign up

Export Citation Format

Share Document