scholarly journals CD4+ Cytotoxic T-Lymphocyte Activity against Macrophages Pulsed with Bovine Herpesvirus 1 Polypeptides

1998 ◽  
Vol 72 (9) ◽  
pp. 7040-7047 ◽  
Author(s):  
Chong Wang ◽  
Gary A. Splitter

ABSTRACT Bovine herpesvirus 1 (BHV-1) induces immune suppression, but the mechanisms for suppression are not well identified. We examined the induction and activity of BHV-1-specific cytolytic CD4+ T lymphocytes (CTL) by stimulating peripheral blood mononuclear cells (PBMC) of cattle immunized with attenuated live BHV-1. Cytolytic effector cells were primarily CD4+ T lymphocytes and lysed autologous, but not allogeneic, macrophages infected with BHV-1 or pulsed with BHV-1 polypeptides. Apoptosis of BHV-1-expressing target cells was observed in CD4+ CTL assays by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) analysis. To determine if apoptosis was mediated by a perforin- or Fas-mediated pathway, EGTA, a known selective inhibitor of the perforin pathway, was used. EGTA did not inhibit CD4+-T-cell-mediated cytotoxic activity, but it did limit the NK cell cytotoxicity of virus infected cells. These findings support the concept that CD4+ CTL lyse macrophages pulsed with BHV-1 polypeptides through a Fas-mediated lytic pathway by inducing apoptosis in the target cells. The prominent cytotoxicity mediated by CD4+ CTL suggests a mechanism of selective removal of viral antigen-associated antigen-presenting cells.

1998 ◽  
Vol 72 (9) ◽  
pp. 7638-7641 ◽  
Author(s):  
Emmanuel Hanon ◽  
Gilles Meyer ◽  
Alain Vanderplasschen ◽  
Cécile Dessy-Doizé ◽  
Etienne Thiry ◽  
...  

ABSTRACT Bovine herpesvirus 1 (BHV-1) induces apoptotic cell death in bovine peripheral blood mononuclear cells and B-lymphoma cells. Using a BHV-1 glycoprotein H null mutant, we have demonstrated that although penetration of BHV-1 is not required, attachment of BHV-1 viral particles is essential for the induction of apoptosis.


1999 ◽  
Vol 73 (5) ◽  
pp. 3778-3788 ◽  
Author(s):  
Laxminarayana R. Devireddy ◽  
Clinton J. Jones

ABSTRACT Programmed cell death (PCD), or apoptosis, is initiated in response to various stimuli, including virus infection. Bovine herpesvirus 1 (BHV-1) induces PCD in peripheral blood mononuclear cells at the G0/G1 phase of the cell cycle (E. Hanon, S. Hoornaert, F. Dequiedt, A. Vanderplasschen, J. Lyaku, L. Willems, and P.-P. Pastoret, Virology 232:351–358, 1997). However, penetration of virus particles is not required for PCD (E. Hanon, G. Meyer, A. Vanderplasschen, C. Dessy-Doize, E. Thiry, and P. P. Pastoret, J. Virol. 72:7638–7641, 1998). The mechanism by which BHV-1 induces PCD in peripheral blood mononuclear cells is not understood, nor is it clear whether nonlymphoid cells undergo PCD following infection. This study demonstrates that infection of bovine kidney (MDBK) cells with BHV-1 leads to PCD, as judged by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling, DNA laddering, and chromatin condensation. p53 appears to be important in this process, because p53 levels and promoter activity increased after infection. Expression of proteins that are stimulated by p53 (p21Waf1 and Bax) is also activated after infection. Cleavage of Bcl-xL, a protein that inhibits PCD, occurred after infection, suggesting that caspases (interleukin-1β-converting enzyme-like proteases) were activated. Other caspase substrates [poly(ADP-ribose) polymerase and actin] are also cleaved during the late stages of infection. Inhibition of caspase activity delayed cytotoxic activity and virus release but increased the overall virus yield. Taken together, these results indicate that nonlymphoid cells undergo PCD near the end of productive infection and further suggest that caspases enhance virus release.


2000 ◽  
Vol 74 (2) ◽  
pp. 817-827 ◽  
Author(s):  
Volker Gerdts ◽  
Jörg Beyer ◽  
Béla Lomniczi ◽  
Thomas C. Mettenleiter

ABSTRACT Herpesvirus glycoproteins play dominant roles in the initiation of infection of target cells in culture and thus may also influence viral tropism in vivo. Whereas the relative contribution of several nonessential glycoproteins to neurovirulence and neurotropism ofPseudorabies virus (PrV), an alphaherpesvirus which causes Aujeszky's disease in pigs, has recently been uncovered in studies using viral deletion mutants, the importance of essential glycoproteins is more difficult to assess. We isolated an infectious PrV mutant, PrV-9112C2, which lacks the gene encoding the essential PrV glycoprotein B (gB) but stably carries in its genome and expresses the homologous gene of bovine herpesvirus 1 (BHV-1) (A. Kopp and T. C. Mettenleiter, J. Virol. 66:2754–2762, 1992). Apart from exhibiting a slight delay in penetration kinetics, PrV-9112C2 was similar in its growth characteristics in cell culture to wild-type PrV. To analyze the effect of the exchange of these homologous glycoproteins in PrV's natural host, swine, 4-week-old piglets were intranasally infected with 106 PFU of either wild-type PrV strain Kaplan (PrV-Ka), PrV-9112C2, or PrV-9112C2R, in which the PrV gB gene was reinserted instead of the BHV-1 gB gene. Animals infected with PrV-Ka and PrV-9112C2R showed a similar course of disease, i.e., high fever, marked respiratory symptoms but minimal neurological disorders, and excretion of high amounts of virus. All animals survived the infection. In contrast, animals infected with PrV-9112C2 showed no respiratory symptoms and developed only mild fever. However, on day 5 after infection, all piglets developed severe central nervous system (CNS) symptoms leading to death within 48 to 72 h. Detailed histological analyses showed that PrV-9112C2R infected all regions of the nasal mucosa and subsequently spread to the CNS preferentially by the trigeminal route. In contrast, PrV-9112C2 primarily infected the olfactory epithelium and spread via the olfactory route. In the CNS, more viral antigen and significantly more pronounced histological changes resulting in more severe encephalitis were found after PrV-9112C2 infection. Thus, our results demonstrate that replacement of PrV gB by the homologous BHV-1 glycoprotein resulted in a dramatic increase in neurovirulence combined with an alteration in the route of neuroinvasion, indicating that the essential gB is involved in determining neurotropism and neurovirulence of PrV.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1909-1914 ◽  
Author(s):  
RA Koup ◽  
JL Sullivan ◽  
PH Levine ◽  
D Brettler ◽  
A Mahr ◽  
...  

Abstract Major histocompatibility (MHC)-restricted, human immunodeficiency virus type one (HIV-1)-specific, cytotoxic T lymphocytes (CTLs) were detected in the peripheral blood mononuclear cells (PBMCs) of HIV-1-infected individuals. Using a system of autologous B and T lymphoblastoid cell lines infected with recombinant vaccinia vectors (VVs) expressing HIV-1 gene products, we were able to detect HIV-1-specific cytolytic responses in the PBMCs of 88% of HIV-1-seropositive hemophiliac patients in the absence of in vitro stimulation. These cytolytic responses were directed against both HIV-1 envelope and gag gene products. The responses were resistant to natural killer (NK) cell depletion and were inhibited by monoclonal antibodies (MoAbs) to the T cell receptor, CD8 surface antigens, and MHC class I antigens, suggesting a classical MHC class I restricted, virus-specific CTL response.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4879-4879
Author(s):  
Juan Tong ◽  
Huilan Liu ◽  
Liangquan Geng ◽  
Zimin Sun ◽  
Baolin Tang ◽  
...  

Abstract Natural killer (NK) cell alloreactivity is reported to mediate strong graft versus leukemia (GVL) effect in patients after allogeneic stem-cell transplantation. NKG2D receptors recognize human MHC class Ichain related A and B (MICA/B) and UL16-binding protein 1∼4(ULBP 1∼4) on target cells, thereby regulating NK cell activity. To examine the recovery of NKG2D, NKG2A and other receptors expression by NK cells, we used flow cytometry to evaluate samples from 11 chronic myeloid leukemia patients and their donors in the year following unmanipulated HLA completely matched peripheral blood stem cells plus bone marrow transplantation. Peripheral blood mononuclear cells from patients and their donors were tested in standard 51Cr release assays against cultured K562 targets to determine the cytotoxicity of the NK cells in the same intervals. There is no mismatched immunoglobulin-like receptor (KIR) ligand in both GVH and HVG direction. The reconstitution of KIR2DL1 (CD158a) after this transplantation protocol was very slow and these receptors didn’t reach normal value in the year and KIR2DL2 (CD158b) was much better. The NKG2D increased and the NKG2A decreased quickly at the same time after engraftment, and used linear regression analysis we demonstrated that NKG2A recovery was inversely correlated with NKG2D recovery in the year following transplantation. The ratio of NKG2D/NKG2A was directly associated with the capacity of NK-cell cytotoxicity. Thus, the reconstitution of NKG2D makes contribution to the recovery of the NK cytotoxicity. These results reveals that the NK cells generated after HLA matched blood plus bone morrow transplantation of CML patients are promoted at an immature state characterized by specific phenotypic features and enhanced functioning, having potential impact for immune responsiveness and transplantation outcome.


2010 ◽  
Vol 29 (5) ◽  
pp. 359-367 ◽  
Author(s):  
Jai-Sing Yang ◽  
Chia-Chun Wu ◽  
Chao-Lin Kuo ◽  
Chin-Chung Yeh ◽  
Fu-Shin Chueh ◽  
...  

Solanum lyratum Thunberg (Solanaceae) has been used as a folk medicine for treating liver, lung and esophagus in the Chinese population. Our previous studies have shown that the crude extract of S. lyratum Thunberg (SLE) induced apoptosis in colo 205 human colon adenocarcinoma cells; however, there is no report to show SLE affect immune responses in vivo. In this study, the in vivo effects of SLE on leukemia WEHI-3 cells and immune responses such as phagocytosis and natural killer (NK) cell activity in normal and leukemia mice were investigated. The SLE treatment decreases surface markers of CD3 and Mac-3 in normal and leukemia mice but promoted the cell markers of CD19 and CD11b in normal mice and CD11b in leukemia mice indicating that the precursors of T cells was inhibited and B cells and macrophage were promoted. The SLE treatment promoted the activity of macrophage phagocytosis in the peripheral blood mononuclear cells (PBMC) and peritoneal cells from normal and leukemia mice. The results also showed that NK cells from the normal and leukemia mice after treatment with SLE can kill the YAC-1 target cells. Therefore, the SLE treatment increased macrophage and NK cell activities. These consistent results indicate SLE could be a potent immune responses agent.


Sign in / Sign up

Export Citation Format

Share Document