scholarly journals SPI-1-Dependent Host Range of Rabbitpox Virus and Complex Formation with Cathepsin G Is Associated with Serpin Motifs

1999 ◽  
Vol 73 (11) ◽  
pp. 8999-9010 ◽  
Author(s):  
Kristin B. Moon ◽  
Peter C. Turner ◽  
Richard W. Moyer

ABSTRACT Serpins are a superfamily of serine proteinase inhibitors which function to regulate a number of key biological processes including fibrinolysis, inflammation, and cell migration. Poxviruses are the only viruses known to encode functional serpins. While some poxvirus serpins regulate inflammation (myxoma virus SERP1 and cowpox virus [CPV] crmA/SPI-2) or apoptosis (myxoma virus SERP2 and CPV crmA/SPI-2), the function of other poxvirus serpins remains unknown. The rabbitpox virus (RPV) SPI-1 protein is 47% identical to crmA and shares all of the serpin structural motifs. However, no serpin-like activity has been demonstrated for SPI-1 to date. Earlier we showed that RPV with the SPI-1 gene deleted, unlike wild-type virus, fails to grow on A549 or PK15 cells (A. Ali, P. C. Turner, M. A. Brooks, and R. W. Moyer, Virology 202:306–314, 1994). Here we demonstrate that in the absence of a functional SPI-1 protein, infected nonpermissive cells which exhibit the morphological features of apoptosis fail to activate terminal caspases or cleave the death substrates PARP or lamin A. We show that SPI-1 forms a stable complex in vitro with cathepsin G, a member of the chymotrypsin family of serine proteinases, consistent with serpin activity. SPI-1 reactive-site loop (RSL) mutations of the critical P1 and P14 residues abolish this activity. Viruses containing the SPI-1 RSL P1 or P14 mutations also fail to grow on A549 or PK15 cells. These results suggest that the full virus host range depends on the serpin activity of SPI-1 and that in restrictive cells SPI-1 inhibits a proteinase with chymotrypsin-like activity and may function to inhibit a caspase-independent pathway of apoptosis.

Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 2089-2097 ◽  
Author(s):  
Fiona L. Scott ◽  
Claire E. Hirst ◽  
Jiuru Sun ◽  
Catherina H. Bird ◽  
Stephen P. Bottomley ◽  
...  

The monocyte and granulocyte azurophilic granule proteinases elastase, proteinase 3, and cathepsin G are implicated in acute and chronic diseases thought to result from an imbalance between the secreted proteinase(s) and circulating serpins such as 1-proteinase inhibitor and 1-antichymotrypsin. We show here that the intracellular serpin, proteinase inhibitor 6 (PI-6), is present in monocytes, granulocytes, and myelomonocytic cell lines. In extracts from these cells, PI-6 bound an endogenous membrane-associated serine proteinase to form an sodium dodecyl sulfate (SDS)-stable complex. Using antibodies to urokinase, elastase, proteinase 3, or cathepsin G, we demonstrated that the complex contains cathepsin G. Native cathepsin G and recombinant PI-6 formed an SDS-stable complex in vitro similar in size to that observed in the extracts. Further kinetic analysis demonstrated that cathepsin G and PI-6 rapidly form a tight 1:1 complex (ka = 6.8 ± 0.2 × 106mol/L−1s−1 at 17°C;Ki = 9.2 ± 0.04 × 10−10 mol/L). We propose that PI-6 complements 1-proteinase inhibitor and 1-antichymotrypsin (which control extracellular proteolysis) by neutralizing cathepsin G that leaks into the cytoplasm of monocytes or granulocytes during biosynthesis or phagocytosis. Control of intracellular cathepsin G may be particularly important, because it has recently been shown to activate the proapoptotic proteinase, caspase-7.


1996 ◽  
Vol 43 (3) ◽  
pp. 507-513 ◽  
Author(s):  
D Stachowiak ◽  
A Polanowski ◽  
G Bieniarz ◽  
T Wilusz

Two serine proteinase inhibitors (ELTI I and ELTI II) have been isolated from mature seeds of Echinocystis lobata by ammonium sulfate fractionation, methanol precipitation, ion exchange chromatography, affinity chromatography on immobilized anhydrotrypsin and HPLC. ELTI I and ELTI II consist of 33 and 29 amino-acid residues, respectively. The primary structures of these inhibitors are as follows: ELTI I KEEQRVCPRILMRCKRDSDCLAQCTCQQSGFCG ELTI II RVCPRILMRCKRDSDCLAQCTCQQSGFCG The inhibitors show sequence similarity with the squash inhibitor family. ELTI I differs from ELTI II only by the presence of the NH2-terminal tetrapeptide Lys-Glu-Glu-Gln. The association constants (Ka) of ELTI I and ELTI II with bovine-trypsin were determined to be 6.6 x 10(10) M-1, and 3.1 x 10(11) M-1, whereas the association constants of these inhibitors with cathepsin G were 1.2 x 10(7) M-1, and 1.1 x 10(7) M-1, respectively.


1977 ◽  
Author(s):  
E.D. Gomperts ◽  
M. Zucker

Antithrombin III is one of the serine proteinase inhibitors of the plasma which has been shown to specifically inhibit thrombin as well as Factor X. Heparin acts via antithrombin III, the heparin cofactor, hence it is difficult to explain the relative insensitivity of the prothrombin time to the presence of heparin in plasma as both thrombin, ana Factox Xa are associated functionally with the prothrombin time. This insensitivity becomes more obvious on appreciating the extreme sensitivity to heparin of the activated partial thromboplastin time as well as the thrombin time. This communication reports the demonstration of heparin inhibiting action of brain thromboplastin. The response of the prothrombin time to heparin under various conditions, and the effect of brain thromboplastin obtained from various sources and by different preparative techniques on the action of heparin in vitvo have been studied. The heparin inhibiting activity was shown to parallel the tissue factor activity. It is heat labile, non-dialysable, destroyed by detergent activity and lies in a high molecular weight fraction of the brain thromboplastin preparation (>300,000). In addition to explaining certain in vitro phenomena, these observations may explain the previously observed heparin resistance in the generalised Schwartzman phenomenon.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Frank Denis Torres-Huaco ◽  
Cláudio C. Werneck ◽  
Cristina Pontes Vicente ◽  
Talita Vassequi-Silva ◽  
Ana Cláudia Coelho Nery-Diez ◽  
...  

We report a rapid purification method using one-step chromatography of SVSP Rhombeobin (LMR-47) fromLachesis muta rhombeatavenom and its procoagulant activities and effects on platelet aggregation. The venom was fractionated by a single chromatographic step in RP-HPLC on a C8 Discovery BIO Wide Pore, showing high degree of molecular homogeneity with molecular mass of 47035.49 Da. Rhombeobin showed amidolytic activity upon BAρNA, with a broad optimum pH (7–10) and was stable in solution up to 60°C. The amidolytic activity was inhibited by serine proteinase inhibitors and reducing agents, but not chelating agents. Rhombeobin showed high coagulant activity on mice plasma and bovine fibrinogen. The deduced amino acid sequence of Rhombeobin showed homology with other SVSPs, especially with LM-TL (L. m. muta) and Gyroxin (C. d. terrificus). Rhombeobin acts,in vitro, as a strong procoagulant enzyme on mice citrated plasma, shortening the APTT and PT tests in adose-dependent manner. The protein showed, “ex vivo”, a strong defibrinogenating effect with 1 µg/animal. Lower doses activated the intrinsic and extrinsic coagulation pathways and impaired the platelet aggregation induced by ADP. Thus, this is the first report of a venom component that produces a venom-induced consumptive coagulopathy (VICC).


2003 ◽  
Vol 77 (1) ◽  
pp. 21-26 ◽  
Author(s):  
T. Ikeda

AbstractThe involvement of intrinsic proteinases in the excystment of Paragonimus ohirai metacercariae was studied in in vitro excystment induced by sodium (Na) cholate, a bile salt and A23187, a Ca2+ ionophore. The effects of various proteinase inhibitors on the in vitro excystment were examined and similar inhibitory profiles were obtained. Benzyloxycarbonyl-L-leucyl-L-leucinal (Z-Leu-Leu-H), a cysteine proteinase inhibitor and 4-(2-aminoethyl)-benzenesulfonyl fluoride (Pefabloc SC), a serine proteinase inhibitor completely inhibited excystment, while L-3-carboxy-2,3-trans-epoxypropionyl-leucylamido (4-guanidino)-butane (E-64), a cysteine proteinase inhibitor and leupeptin, a cysteine/serine proteinase inhibitor permitted partial excystment at a lower rate, but inhibited it from proceeding from the partial excystment stage. In secretions released from metacercariae during excystment, proteinase activities detected towards various fluorogenic peptidyl substrates were almost completely inhibited by Z-Leu-Leu-H and E-64, but not by Pefabloc SC. Sodium cholate induced a higher secretion of cysteine proteinases and a higher rate of excystment than A23187. Profiles of cysteine proteinase activities towards five peptidyl substrates detected were markedly different among the two secretions and the lysate of newly excysted juveniles. Newly excysted juveniles released cysteine proteinases with similar activity profiles and levels to metacercariae induced by Na cholate-incubation, whereas the release of cysteine proteinases was reduced compared with metacercariae induced by A23187-incubation. These results provide valuable information about the involvement of intrinsic proteinases in metacercarial excystment.


2005 ◽  
Vol 79 (14) ◽  
pp. 9168-9179 ◽  
Author(s):  
Benjamin G. Luttge ◽  
Richard W. Moyer

ABSTRACT The orthopoxvirus serpin SPI-1 is an intracellular serine protease inhibitor that is active against cathepsin G in vitro. Rabbitpox virus (RPV) mutants with deletions of the SPI-1 gene grow on monkey kidney cells (CV-1) but do not plaque on normally permissive human lung carcinoma cells (A549). This reduced-host-range (hr) phenotype suggests that SPI-1 may interact with cellular and/or other viral proteins. We devised a genetic screen for suppressors of SPI-1 hr mutations by first introducing a mutation into SPI-1 (T309R) at residue P14 of the serpin reactive center loop. The SPI-1 T309R serpin is inactive as a protease inhibitor in vitro. Introduction of the mutation into RPV leads to the same restricted hr phenotype as deletion of the SPI-1 gene. Second-site suppressors were selected by restoration of growth of the RPV SPI-1 T309R hr mutant on A549 cells. Both intragenic and extragenic suppressors of the T309R mutation were identified. One novel intragenic suppressor mutation, T309C, restored protease inhibition by SPI-1 in vitro. Extragenic suppressor mutations were mapped by a new procedure utilizing overlapping PCR products encompassing the entire genome in conjunction with marker rescue. One suppressor mutation, which also rendered the virus temperature sensitive for growth, mapped to the DNA polymerase gene (E9L). Several other suppressors mapped to gene D5R, an NTPase required for DNA replication. These results unexpectedly suggest that the host range function of SPI-1 may be associated with viral DNA replication by an as yet unknown mechanism.


2006 ◽  
Vol 96 (2) ◽  
pp. 167-172 ◽  
Author(s):  
B. Oppert ◽  
P. Walters ◽  
M. Zuercher

AbstractDigestion in the larger black flour beetle, Cynaeus angustus (LeConte), was studied to identify new control methods for this pest of stored grains and grain products. The physiological pH of the larval gut, as measured with extracts in water, was approximately 6.1, and the pH for optimal hydrolysis of casein by gut extracts was 6.2 when buffers were reducing. However, under non-reducing conditions, hydrolysis of casein and synthetic serine proteinase substrates was optimal in alkaline buffer. Three major proteinase activities were observed in zymograms using casein or gelatin. Caseinolytic activity of C. angustus gut extracts was inhibited by inhibitors that target aspartic and serine proteinase classes, with minor inhibition by a cysteine proteinase inhibitor. In particular, soybean trypsin and trypsin/chymotrypsin inhibitors were most effective in reducing the in vitro caseinolytic activity of gut extracts. Based on these data, further studies are suggested on the effects of dietary soybean inhibitors of serine proteinases, singly and in combination with aspartic and cysteine proteinase inhibitors, on C. angustus larvae. Results from these studies can be used to develop new control strategies to prevent damage to grains and stored products by C. angustus and similar coleopteran pests.


1983 ◽  
Vol 214 (3) ◽  
pp. 915-921 ◽  
Author(s):  
P S Agutter

RNA efflux from isolated nuclei can be studied either as a means of elucidating the general mechanism of nucleo-cytoplasmic RNA transport, or as part of an investigation of the processing and utilization of particular gene transcripts. The present paper describes an assessment of three methodological criticisms of RNA-efflux measurements that are made for the former reason: for such measurements, it is sufficient to show that the post-incubation supernatant RNA is similar overall to homologous cytoplasmic mRNA, rather than to nuclear RNA, that is nevertheless of intranuclear origin, and that alterations to the medium during experiments do not markedly perturb this general nuclear restriction. The results seem to justify the following conclusions. (1) Although degradation of the nuclear RNA occurs during incubation in vitro, this process does not account for the appearance of RNA in the postnuclear supernatant. The degradation can be largely prevented by the addition of serine-proteinase inhibitors without altering the RNA efflux rate. (2) Some adsorption of labelled cytoplasmic RNA to the nuclear surface occurs during both isolation and incubation of the nuclei, and some desorption occurs during incubation. However, these effects introduce errors of less than 10% into the measurements of efflux rates. (3) Exogenous acidic polymers, including polyribonucleotides, disrupt nuclei and increase the apparent RNA efflux rate by causing leakage of nuclear contents. However, this effect can largely be overcome by including the nuclear stabilizers spermidine, Ca2+ and Mn2+ in the medium. In terms of this assessment, it appears that RNA efflux from isolated nuclei in media containing nuclear stabilizers serves as a reasonable model for transport in vivo.


Sign in / Sign up

Export Citation Format

Share Document