scholarly journals Cooperative Activation of Human Papillomavirus Type 8 Gene Expression by the E2 Protein and the Cellular Coactivator p300

2002 ◽  
Vol 76 (21) ◽  
pp. 11042-11053 ◽  
Author(s):  
Andreas Müller ◽  
Andreas Ritzkowsky ◽  
Gertrud Steger

ABSTRACT The E2 proteins of papillomaviruses (PV) bind to the coactivator CBP/p300 as do many other transcription factors, but the precise role of CBP/p300 in E2-specific functions is not yet understood. We show that the E2 protein of human PV type 8 (HPV8) directly binds to p300. Activation of HPV8 gene expression by low amounts of HPV8 E2 was stimulated up to sevenfold by coexpression of p300. The interaction between E2 and p300 may play a role in differentiation-dependent activation of PV gene expression, since we can show that the expression level of p300 increases during keratinocyte differentiation. Surprisingly, sequence-specific binding of E2 to its recognition sites within the regulatory region of HPV8 is not necessary for this cooperation, indicating that E2 can be recruited to the promoter via protein-protein interaction. HPV8 E2 binds via its N-terminal activation domain (AD), its C-terminal DNA binding domain (DBD), and its internal hinge region to p300 in vitro. Transient-transfection assays revealed that the AD is necessary and sufficient for cooperative activation with p300. However, we provide evidence that the interaction of the hinge and the DBD of HPV8 E2 with p300 may contribute. Our data suggest an important role of p300 in regulation of HPV8 gene expression and reveal a new mechanism by which E2 may be recruited to a promoter to activate transcription without sequence specific DNA binding.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3547-3547
Author(s):  
Trang Hoang ◽  
Benoit Grondin ◽  
Martin Lefrancois ◽  
Marianne St Denis ◽  
Daniel G. Tenen ◽  
...  

Abstract The gene coding for the pro-inflammatory cytokine IL-1β is induced at the transcription level in differentiating macrophages and in stress response. Interestingly, PU.1 and C/EBPβ, two transcription factors implicated in IL-1β gene expression are not induced by stress exposure, while c-Jun is strongly induced. Strikingly, this upregulation of c-Jun is required for IL-1β induction, as cells expressing a c-Jun antisense construct fail to respond to stress exposure. We have mapped the induction of IL-1β gene expression to its proximal promoter and show that it is mediated by the transcriptional synergy between C/EBPβ, c-Jun and PU.1 via specific DNA binding sites for C/EBPβ and PU.1 only. To elucidate how PU.1 and C/EBPβ cooperate with c-Jun at the molecular level, we have optimized a DNA binding assay based on IL-1β promoter fragments immobilized on beads to isolate protein complexes from nuclear extracts, which were subsequently eluted and identified by Western blotting. We show that PU.1 or C/EBPβ alone directly bind this promoter fragment via specific sequences while purified recombinant c-Jun fails to do so. However, the presence of either PU.1 or C/EBPβ on the promoter allows for a recruitment of c-Jun to the DNA template, mediated by direct protein-protein interaction. Interestingly, the leucine zipper domain of c-Jun is essential for its interaction with C/EBPβ while dispensable for PU.1 interaction in vitro whereas its basic domain is required for both interactions. Furthermore, we show that PU.1 and C/EBPβ cooperatively bind the IL-1β promoter, resulting in a synergistic recruitment of c-Jun. Finally, we show that the strength of interaction of c-Jun mutants with PU.1 or C/EBPβ determine the strength of transcription output and c-Jun mutants that fail to associate with either PU.1 or C/EBPβ are transcriptionally inactive. In contrast, c-Jun mutants exhibiting increased homodimerization are more active that the wild type protein. Taken together, our data suggest that c-Jun homodimers can be targeted to the IL-1β promoter in the absence of a specific DNA binding element, and conclude that PU.1 and C/EBPβ are specifically tethered to the IL-1β promoter while c-Jun cooperatively binds these proteins and acts as a transcriptional co-activator. We propose a mechanism based on an initial binding of PU.1 and C/EBPβ to the IL-1β promoter followed by a cooperative recruitment of c-Jun, resulting in transcriptional synergy and IL-1β gene expression in stress response.


2019 ◽  
Vol 47 (13) ◽  
pp. 6632-6641 ◽  
Author(s):  
Soumitra Pal ◽  
Jan Hoinka ◽  
Teresa M Przytycka

Abstract Understanding the principles of DNA binding by transcription factors (TFs) is of primary importance for studying gene regulation. Recently, several lines of evidence suggested that both DNA sequence and shape contribute to TF binding. However, the following compelling question is yet to be considered: in the absence of any sequence similarity to the binding motif, can DNA shape still increase binding probability? To address this challenge, we developed Co-SELECT, a computational approach to analyze the results of in vitro HT-SELEX experiments for TF–DNA binding. Specifically, Co-SELECT leverages the presence of motif-free sequences in late HT-SELEX rounds and their enrichment in weak binders allows Co-SELECT to detect an evidence for the role of DNA shape features in TF binding. Our approach revealed that, even in the absence of the sequence motif, TFs have propensity to bind to DNA molecules of the shape consistent with the motif specific binding. This provides the first direct evidence that shape features that accompany the preferred sequence motifs also bestow an advantage for weak, sequence non-specific binding.


2006 ◽  
Vol 26 (4) ◽  
pp. 1434-1444 ◽  
Author(s):  
András Blastyák ◽  
Rakesh K. Mishra ◽  
Francois Karch ◽  
Henrik Gyurkovics

ABSTRACT Specific targeting of the protein complexes formed by the Polycomb group of proteins is critically required to maintain the inactive state of a group of developmentally regulated genes. Although the role of DNA binding proteins in this process has been well established, it is still not understood how these proteins target the Polycomb complexes specifically to their response elements. Here we show that the grainyhead gene, which encodes a DNA binding protein, interacts with one such Polycomb response element of the bithorax complex. Grainyhead binds to this element in vitro. Moreover, grainyhead interacts genetically with pleiohomeotic in a transgene-based, pairing-dependent silencing assay. Grainyhead also interacts with Pleiohomeotic in vitro, which facilitates the binding of both proteins to their respective target DNAs. Such interactions between two DNA binding proteins could provide the basis for the cooperative assembly of a nucleoprotein complex formed in vitro. Based on these results and the available data, we propose that the role of DNA binding proteins in Polycomb group-dependent silencing could be described by a model very similar to that of an enhanceosome, wherein the unique arrangement of protein-protein interaction modules exposed by the cooperatively interacting DNA binding proteins provides targeting specificity.


2019 ◽  
Author(s):  
S Jain ◽  
J Maini ◽  
A Narang ◽  
S Maiti ◽  
V Brahmachari

ABSTRACTThe INO80 complex, including the Ino80 protein, forms a highly conserved canonical complex that remodels chromatin in the context of multiple cellular functions. TheDrosophilahomologue, dIno80, is involved in homeotic gene regulation during development as a canonical Pho-dIno80 complex. Previously, we found that dIno80 regulates homeotic genes by interacting with epigenetic regulators, such as polycomb and trithorax, suggesting the occurrence of non-canonical Ino80 complexes. Here using spectroscopic methods and gel retardation assays, we identified a set of consensus DNA sequences that DNA binding domain of dIno80 (DBINO) interacts with having differential affinity and high specificity. Testing these sequences in reporter assays, showed that this interaction can positively regulate transcription. These results suggest that, dIno80 has a sequence preference for interaction with DNA leading to transcriptional changes.SIGNIFICANCEThe chromatin remodeling proteins control gene expression by nucleosome sliding and exchange. They are known to function as multi-subunit complexes recruited to chromatin by transcription factors or histone modification readers. Here, we report a sequence specific binding potential for the chromatin remodeler, dIno80. We have carried outin vitrostudies with DNA binding domain of dIno80 to elucidate its sequence specific DNA binding. We have also showed that this binding can regulated reporter gene expression inDrosophilacells. Our results suggest a non-canonical role of Ino80 in transcriptional regulation.


1988 ◽  
Vol 27 (04) ◽  
pp. 151-153
Author(s):  
P. Thouvenot ◽  
F. Brunotte ◽  
J. Robert ◽  
L. J. Anghileri

In vitro uptake of 67Ga-citrate and 59Fe-citrate by DS sarcoma cells in the presence of tumor-bearing animal blood plasma showed a dramatic inhibition of both 67Ga and 59Fe uptakes: about ii/io of 67Ga and 1/5o of the 59Fe are taken up by the cells. Subcellular fractionation appears to indicate no specific binding to cell structures, and the difference of binding seems to be related to the transferrin chelation and transmembrane transport differences


2005 ◽  
Vol 79 (13) ◽  
pp. 8661-8664 ◽  
Author(s):  
Stephen Schuck ◽  
Arne Stenlund

ABSTRACT Viral initiator proteins are polypeptides that form oligomeric complexes on the origin of DNA replication (ori). These complexes carry out a multitude of functions related to initiation of DNA replication, and although many of these functions have been characterized biochemically, little is understood about how the complexes are assembled. Here we demonstrate that loss of one particular interaction, the dimerization between E1 DNA binding domains, has a severe effect on DNA replication in vivo but has surprisingly modest effects on most individual biochemical activities in vitro. We conclude that the dimer interaction is primarily required for initial recognition of ori.


1991 ◽  
Vol 11 (3) ◽  
pp. 1547-1552
Author(s):  
D Leshkowitz ◽  
M D Walker

Insulin-producing cells and fibroblasts were fused to produce hybrid lines. In hybrids derived from both hamster and rat insulinoma cells, no insulin mRNA could be detected in any of seven lines examined by Northern (RNA) analysis despite the presence in each line of the insulin genes of both parental cells. Hybrid cells were transfected with recombinant chloramphenicol acetyltransferase plasmids containing defined segments of the rat insulin I gene 5' flank. We observed no transcriptional activity of the intact insulin enhancer or of IEB2, a critical cis-acting element of the insulin enhancer. IEB2 has previously been shown to interact in vitro with IEF1, a DNA-binding activity observed selectively in insulin-producing cells. Hybrid cells showed no detectable IEF1 activity. Furthermore, the insulin enhancer was unable to reduce transcription directed by the Moloney sarcoma virus enhancer in a double-enhancer construct. Thus, extinction of insulin gene expression in the hybrids apparently does not operate through a direct action of repressors on the insulin enhancer; rather, extinction is accompanied by, and may be caused by, reduced DNA-binding activity of the putative transcriptional activator IEF1.


Development ◽  
1997 ◽  
Vol 124 (21) ◽  
pp. 4243-4252 ◽  
Author(s):  
S.K. Kim ◽  
M. Hebrok ◽  
D.A. Melton

The role of the notochord in inducing and patterning adjacent neural and mesodermal tissues is well established. We provide evidence that the notochord is also required for one of the earliest known steps in the development of the pancreas, an endodermally derived organ. At a developmental stage in chick embryos when the notochord touches the endoderm, removal of notochord eliminates subsequent expression of several markers of dorsal pancreas bud development, including insulin, glucagon and carboxypeptidase A. Pancreatic gene expression can be initiated and maintained in prepancreatic chick endoderm grown in vitro with notochord. Non-pancreatic endoderm, however, does not express pancreatic genes when recombined with the same notochord. The results suggest that the notochord provides a permissive signal to endoderm to specify pancreatic fate in a stepwise manner.


Sign in / Sign up

Export Citation Format

Share Document