scholarly journals The Mason-Pfizer Monkey Virus PPPY and PSAP Motifs Both Contribute to Virus Release

2003 ◽  
Vol 77 (17) ◽  
pp. 9474-9485 ◽  
Author(s):  
Eva Gottwein ◽  
Jochen Bodem ◽  
Barbara Müller ◽  
Ariane Schmechel ◽  
Hanswalter Zentgraf ◽  
...  

ABSTRACT Late (L) domains are required for the efficient release of several groups of enveloped viruses. Three amino acid motifs have been shown to provide L-domain function, namely, PPXY, PT/SAP, or YPDL. The retrovirus Mason-Pfizer monkey virus (MPMV) carries closely spaced PPPY and PSAP motifs. Mutation of the PPPY motif results in a complete loss of virus release. Here, we show that the PSAP motif acts as an additional L domain and promotes the efficient release of MPMV but requires an intact PPPY motif to perform its function. Examination of HeLaP4 cells expressing PSAP mutant virus by electron microscopy revealed mostly late budding structures and chains of viruses accumulating at the cell surface with little free virus. In the case of the PPPY mutant virus, budding appeared to be mostly arrested at an earlier stage before induction of membrane curvature. The cellular protein TSG101, which interacts with the human immunodeficiency virus type 1 (HIV-1) PTAP L domain, was packaged into MPMV in a PSAP-dependent manner. Since TSG101 is crucial for HIV-1 release, this result suggests that the Gag-TSG101 interaction is responsible for the virus release function of the MPMV PSAP motif. Nedd4, which has been shown to interact with viral PPPY motifs, was also detected in MPMV particles, albeit at much lower levels. Consistent with a role of VPS4A in the budding of both PPPY and PTAP motif-containing viruses, the overexpression of ATPase-defective GFP-VPS4A fusion proteins blocked both wild-type and PSAP mutant virus release.

2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Andrew Pincetic ◽  
Jonathan Leis

Retroviruses have evolved a mechanism for the release of particles from the cell membrane that appropriates cellular protein complexes, referred to as ESCRT-I, -II, -III, normally involved in the biogenesis of multivesicular bodies. Three different classes of late assembly (L) domains encoded in Gag, with core sequences of PPXY, PTAP, and YPXL, recruit different components of the ESCRT machinery to form a budding complex for virus release. Here, we highlight recent progress in identifying the role of different ESCRT complexes in facilitating budding, ubiquitination, and membrane targeting of avian sarcoma and leukosis virus (ASLV) and human immunodeficiency virus, type 1 (HIV-1). These findings show that retroviruses may adopt parallel budding pathways by recruiting different host factors from common cellular machinery for particle release.


Life ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 100
Author(s):  
Eric Rossi ◽  
Megan E. Meuser ◽  
Camille J. Cunanan ◽  
Simon Cocklin

The capsid (CA) protein of the human immunodeficiency virus type 1 (HIV-1) is an essential structural component of a virion and facilitates many crucial life cycle steps through interactions with host cell factors. Capsid shields the reverse transcription complex from restriction factors while it enables trafficking to the nucleus by hijacking various adaptor proteins, such as FEZ1 and BICD2. In addition, the capsid facilitates the import and localization of the viral complex in the nucleus through interaction with NUP153, NUP358, TNPO3, and CPSF-6. In the later stages of the HIV-1 life cycle, CA plays an essential role in the maturation step as a constituent of the Gag polyprotein. In the final phase of maturation, Gag is cleaved, and CA is released, allowing for the assembly of CA into a fullerene cone, known as the capsid core. The fullerene cone consists of ~250 CA hexamers and 12 CA pentamers and encloses the viral genome and other essential viral proteins for the next round of infection. As research continues to elucidate the role of CA in the HIV-1 life cycle and the importance of the capsid protein becomes more apparent, CA displays potential as a therapeutic target for the development of HIV-1 inhibitors.


2008 ◽  
Vol 52 (2) ◽  
pp. 518-525 ◽  
Author(s):  
Gadi Borkow ◽  
Humberto H. Lara ◽  
Chandice Y. Covington ◽  
Adeline Nyamathi ◽  
Jeffrey Gabbay

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) can be transmitted through breast-feeding and through contaminated blood donations. Copper has potent biocidal properties and has been found to inactivate HIV-1 infectivity. The objective of this study was to determine the capacity of copper-based filters to inactivate HIV-1 in culture media. Medium spiked with high titers of HIV-1 was exposed to copper oxide powder or copper oxide-impregnated fibers or passed through copper-based filters, and the infectious viral titers before and after treatment were determined. Cell-free and cell-associated HIV-1 infectivity was inhibited when exposed to copper oxide in a dose-dependent manner, without cytotoxicity at the active antiviral copper concentrations. Similar dose-dependent inhibition occurred when HIV-1 was exposed to copper-impregnated fibers. Filtration of HIV-1 through filters containing the copper powder or copper-impregnated fibers resulted in viral deactivation of all 12 wild-type or drug-resistant laboratory or clinical, macrophage-tropic and T-cell-tropic, clade A, B, or C, HIV-1 isolates tested. Viral inactivation was not strain specific. Thus, a novel means to inactivate HIV-1 in medium has been developed. This inexpensive methodology may significantly reduce HIV-1 transmission from “mother to child” and/or through blood donations if proven to be effective in breast milk or plasma and safe for use. The successful application of this technology may impact HIV-1 transmission, especially in developing countries where HIV-1 is rampant.


2000 ◽  
Vol 74 (23) ◽  
pp. 11055-11066 ◽  
Author(s):  
Åsa Öhagen ◽  
Dana Gabuzda

ABSTRACT The Vif protein of human immunodeficiency virus type 1 (HIV-1) is important for virion infectivity. Previous studies have shown thatvif-defective virions exhibit structural abnormalities in the virus core and are defective in the ability to complete proviral DNA synthesis in acutely infected cells. We developed novel assays to assess the relative stability of the core in HIV-1 virions. Using these assays, we examined the role of Vif in the stability of the HIV-1 core. The integrity of the core was examined following virion permeabilization or removal of the lipid envelope and treatment with various triggers, including S100 cytosol, deoxynucleoside triphosphates, detergents, NaCl, and buffers of different pH to mimic aspects of the uncoating and disassembly process which occurs after virus entry but preceding or during reverse transcription.vif mutant cores were more sensitive to disruption by all triggers tested than wild-type cores, as determined by endogenous reverse transcriptase (RT) assays, biochemical analyses, and electron microscopy. RT and the p7 nucleocapsid protein were released more readily from vif mutant virions than from wild-type virions, suggesting that the internal nucleocapsid is less stably packaged in the absence of Vif. Purified cores could be isolated from wild-type but not vif mutant virions by sedimentation through detergent-treated gradients. These results demonstrate that Vif increases the stability of virion cores. This may permit efficient viral DNA synthesis by preventing premature degradation or disassembly of viral nucleoprotein complexes during early events after virus entry.


2007 ◽  
Vol 82 (2) ◽  
pp. 638-651 ◽  
Author(s):  
Yun Li ◽  
Bradley Cleveland ◽  
Igor Klots ◽  
Bruce Travis ◽  
Barbra A. Richardson ◽  
...  

ABSTRACT Glycans on human immunodeficiency virus (HIV) envelope protein play an important role in infection and evasion from host immune responses. To examine the role of specific glycans, we introduced single or multiple mutations into potential N-linked glycosylation sites in hypervariable regions (V1 to V3) of the env gene of HIV type 1 (HIV-1) 89.6. Three mutants tested showed enhanced sensitivity to soluble CD4. Mutant N7 (N197Q) in the carboxy-terminal stem of the V2 loop showed the most pronounced increase in sensitivity to broadly neutralizing antibodies (NtAbs), including those targeting the CD4-binding site (IgG1b12) and the V3 loop (447-52D). This mutant is also sensitive to CD4-induced NtAb 17b in the absence of CD4. Unlike the wild-type (WT) Env, mutant N7 mediates CD4-independent infection in U87-CXCR4 cells. To study the immunogenicity of mutant Env, we immunized pig-tailed macaques with recombinant vaccinia viruses, one expressing SIVmac239 Gag-Pol and the other expressing HIV-1 89.6 Env gp160 in WT or mutant forms. Animals were boosted 14 to 16 months later with simian immunodeficiency virus gag DNA and the cognate gp140 protein before intrarectal challenge with SHIV89.6P-MN. Day-of-challenge sera from animals immunized with mutant N7 Env had significantly higher and broader neutralizing activities than sera from WT Env-immunized animals. Neutralizing activity was observed against SHIV89.6, SHIV89.6P-MN, HIV-1 SF162, and a panel of subtype B primary isolates. Compared to control animals, immunized animals showed significant reduction of plasma viral load and increased survival after challenge, which correlated with prechallenge NtAb titers. These results indicate the potential advantages for glycan modification in vaccine design, although the role of specific glycans requires further examination.


CNS Spectrums ◽  
2000 ◽  
Vol 5 (4) ◽  
pp. 61-72 ◽  
Author(s):  
Teri T. Baldewicz ◽  
Pim Brouwers ◽  
Karl Goodkin ◽  
Adarsh M. Kumar ◽  
Mahendra Kumar

AbstractNutritional deficiencies are commonplace in patients with human immunodeficiency virus type 1 (HIV-1) infection, and recent research has indicated that nutritional factors may play an important role in the pathogenesis of HIV-1 disease. Although nutritional deficiencies are unlikely to be the primary causative factor in disease progression, they may contribute to cognitive dysfunction, neurologic abnormalities, mood disturbance, and immune dysregulation associated with HIV-1 infection. Furthermore, deficiencies of specific micronutrients have been associated with increased risk of HIV-1–associated mortality. This article will briefly summarize the role of macronutrient deficiency, the interactions of specific micronutrient deficiencies with neuropsychiatrie functioning, and the role of these factors in HIV-1 disease progression. Since recent research has shown that normalization of many nutritional deficits and supplementation beyond normal levels are associated with improvements in neuropsychiatrie functioning, potential treatment implications will also be discussed.


2007 ◽  
Vol 81 (22) ◽  
pp. 12189-12199 ◽  
Author(s):  
Krishan K. Pandey ◽  
Sibes Bera ◽  
Jacob Zahm ◽  
Ajaykumar Vora ◽  
Kara Stillmock ◽  
...  

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) integrase (IN) inserts the viral DNA genome into host chromosomes. Here, by native agarose gel electrophoresis, using recombinant IN with a blunt-ended viral DNA substrate, we identified the synaptic complex (SC), a transient early intermediate in the integration pathway. The SC consists of two donor ends juxtaposed by IN noncovalently. The DNA ends within the SC were minimally processed (∼15%). In a time-dependent manner, the SC associated with target DNA and progressed to the strand transfer complex (STC), the nucleoprotein product of concerted integration. In the STC, the two viral DNA ends are covalently attached to target and remain associated with IN. The diketo acid inhibitors and their analogs effectively inhibit HIV-1 replication by preventing integration in vivo. Strand transfer inhibitors L-870,810, L-870,812, and L-841,411, at low nM concentrations, effectively inhibited the concerted integration of viral DNA donor in vitro. The inhibitors, in a concentration-dependent manner, bound to IN within the SC and thereby blocked the docking onto target DNA, which thus prevented the formation of the STC. Although 3′-OH recessed donor efficiently formed the STC, reactions proceeding with this substrate exhibited marked resistance to the presence of inhibitor, requiring significantly higher concentrations for effective inhibition of all strand transfer products. These results suggest that binding of inhibitor to the SC occurs prior to, during, or immediately after 3′-OH processing. It follows that the IN-viral DNA complex is “trapped” by the strand transfer inhibitors via a transient intermediate within the cytoplasmic preintegration complex.


Virology ◽  
2004 ◽  
Vol 328 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Dineshkumar Thotala ◽  
Elizabeth A. Schafer ◽  
Biswanath Majumder ◽  
Michelle L. Janket ◽  
Marc Wagner ◽  
...  

1996 ◽  
Vol 40 (11) ◽  
pp. 827-835 ◽  
Author(s):  
Yukako Ohshiro ◽  
Tsutomu Murakami ◽  
Kazuhiro Matsuda ◽  
Kiyoshi Nishioka ◽  
Keiichi Yoshida ◽  
...  

1996 ◽  
Vol 40 (6) ◽  
pp. 1454-1466 ◽  
Author(s):  
J Balzarini ◽  
W G Brouwer ◽  
D C Dao ◽  
E M Osika ◽  
E De Clercq

A large variety of carboxanilide and thiocarboxanilide derivatives in which the original oxathiin or aliphatic moieties present in the prototype compounds UC84 and UC38 were replaced by an (un) substituted furanyl, thienyl, phenyl, or pyrrole entity have been evaluated for activity against wild-type human immunodeficiency virus type 1 strain IIIB [HIV-1 (IIIB)] and a series of mutant virus strains derived thereof. The mutant viruses contained either the Leu-100-->Ile, Lys-103-->Asn, Val-106-->Ala, Glu-138-->Lys, Tyr-181-->Cys, or Tyr-188-->Leu mutation in their reverse transcriptase. Several 3-(2-methylfuranyl)- and 3-(2-methylthienyl)-thiocarboxanilide ester, (thio)ether, and oxime ether derivatives showed exquisitely potent antiviral activity against wild-type HIV-1 (50% effective concentration, 0.009 to 0.021 microM). The pentenylethers of the 2-methylfuranyl and 2-methylthienyl derivatives (i.e., 313, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]- 2-methyl-3-furancarbothioamide or UC-781, and 314, N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl] -2-methyl-3-thiophenecarbothioamide or UC-82) proved virtually equally inhibitory for wild-type and the Ile-100, Ala-106, and Lys-138 mutant virus strains (50% effective concentration, 0.015 to 0.021 microM). Their inhibitory effect against the Asn-103 and Cys-181 reverse transcriptase mutant virus strains was decreased only four- to sevenfold compared with wildtype virus. UC-781 and UC-82 should be considered potential candidate drugs for the treatment of HIV-1-infected individuals.


Sign in / Sign up

Export Citation Format

Share Document