scholarly journals The Extreme Carboxyl Terminus of v-Abl Is Required for Lymphoid Cell Transformation by Abelson Virus

2003 ◽  
Vol 77 (8) ◽  
pp. 4617-4625 ◽  
Author(s):  
David Warren ◽  
Deborah S. Griffin ◽  
Celine Mainville ◽  
Naomi Rosenberg

ABSTRACT The v-Abl protein tyrosine kinase encoded by Abelson murine leukemia virus (Ab-MLV) induces transformation of pre-B cells in vivo and in vitro and can transform immortalized fibroblast cell lines in vitro. Although the kinase activity of the protein is required for these events, most previously studied mutants encoding truncated v-Abl proteins that lack the extreme carboxyl terminus retain high transforming capacity in NIH 3T3 cells but transform lymphocytes poorly. To understand the mechanisms responsible for poor lymphoid transformation, mutants expressing a v-Abl protein lacking portions of the COOH terminus were compared for their ability to transform pre-B cells. Although all mutants lacking sequences within the COOH terminus were compromised for lymphoid transformation, loss of amino acids in the central region of the COOH terminus, including those implicated in JAK interaction and DNA binding, decreased transformation twofold or less. In contrast, loss of the extreme COOH terminus rendered the protein unstable and led to rapid proteosome-mediated degradation, a feature that was more prominent when the protein was expressed in Ab-MLV-transformed lymphoid cells. These data indicate that the central portion of the COOH terminus is not essential for lymphoid transformation and reveal that one important function of the COOH terminus is to stabilize the v-Abl protein in lymphoid cells.

1978 ◽  
Vol 147 (4) ◽  
pp. 1126-1141 ◽  
Author(s):  
N Rosenberg ◽  
D Baltimore

Abelson murine leukemia virus (A-MuLV)-transformed fibroblast nonproducer cells were used to prepare A-MuLV stocks containing a number of different helper viruses. The oncogenicity of the A-MuLV stocks was tested by animal inoculation and their ability to transform normal mouse bone marrow cells was measured in vitro. All of the A-MuLV stocks transformed fibroblast cells efficiently. However, only A-MuLV stocks prepared with helper viruses that are highly oncogenic were efficient in vivo and in vitro in hematopoietic cell transformation. In addition, inefficient helpers did not establish a stable infection in lymphoid nonproducer cells. Thus, helper virus has a more central role in lymphoid cell transformation than in fibroblast cell transformation.


1999 ◽  
Vol 19 (7) ◽  
pp. 4825-4831 ◽  
Author(s):  
Indira Unnikrishnan ◽  
Arash Radfar ◽  
Jenia Jenab-Wolcott ◽  
Naomi Rosenberg

ABSTRACT Transformation of pre-B cells by Abelson murine leukemia virus (Ab-MLV) involves a balance between positive, growth-stimulatory signals from the v-Abl oncoprotein and negative regulatory cues from cellular genes. This phenomenon is reflected by the clonal selection that occurs during Ab-MLV-mediated transformation in vivo and in vitro. About 50% of all Ab-MLV-transformed pre-B cells express mutant forms of p53 as they emerge from this process, suggesting that this protein may play an important role in the transformation process. Consistent with this idea, expression of p19Arf, a protein whose function depends on the presence of a functional p53, is required for the apoptotic crisis that characterizes primary Ab-MLV transformants. To test the role of p53 in pre-B-cell transformation directly, we examined the response of Trp53 −/− mice to Ab-MLV. The absence of p53 shortens the latency of Abelson disease induction but does not affect the frequency of cells susceptible to Ab-MLV-induced transformation. However, primary transformants derived from the null animals bypass the apoptotic crisis that characterizes the transition from primary transformant to fully malignant cell line. These effects do not require p21Cip-1, a major downstream target of p53; however, consistent with a role of p19Arf, transformants expressing mutant p53 and abundant p19 retain wild-type p19 sequences.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.


1995 ◽  
Vol 4 (2) ◽  
pp. 79-84 ◽  
Author(s):  
Una Chen ◽  
Hoyan Mok

Mouse embryonic stem (ES) cells in culture can differentiate into late stages of many lineage-committed precursor cells. Under appropriate organ-culture conditions, ES cels differentiate into lymphoidlike cells at a stage equivalent to lymphoid cells found in fetal liver. These hematopoietic precursors are located in cup-shaped structures found in some embryoid bodies; we called such embryoid bodies “ES fetuses.” In this study, we have followed the maturation of hematopoietic cells after implantation of ES fetuses into nude mice for 3 weeks. ES-cell-derived lymphoid cells-pre-B cells, mature B cells, and mature T cells were found in all lymphoid organs. Interestingly, there was also an increase of T cells of host origin. Because native nude mouse lack thymus, these T cells might be educated by thymuslike epithelium generated from ES fetuses. Practical applications of this combinedin vitroandin vivosystem are discussed.


1993 ◽  
Vol 13 (4) ◽  
pp. 2578-2585 ◽  
Author(s):  
E M Weissinger ◽  
H Mischak ◽  
J Goodnight ◽  
W F Davidson ◽  
J F Mushinski

Abelson murine leukemia virus (A-MuLV), a retrovirus that expresses the v-abl oncogene, characteristically induces pre-B-cell lymphomas following in vivo infection of BALB/c mice or in vitro infection of suspensions of fetal liver or bone marrow cells. ABL-MYC, a retrovirus that expresses both v-abl and c-myc, induces solely plasmacytomas in BALB/c mice. To investigate how the addition of overexpression of c-myc to that of v-abl accomplishes this dramatic change in the phenotype of the cells transformed by these closely related retroviruses, we utilized helper-free A-MuLV (psi 2) and ABL-MYC (psi 2) in vitro to infect suspensions of cells from different lymphoid tissues and purified immature and purified mature B cells. As expected, A-MuLV(psi 2) induced only pre-B-cell lymphomas in vivo and in vitro when immature B cells were present. ABL-MYC(psi 2), on the other hand, produced only plasmacytomas, even when purified immature B lymphocytes were infected in vitro. Although the A-MuLV(psi 2)-induced pre-B-cell lymphomas express easily detectable levels of c-myc mRNA, maturation into more-mature forms of B lymphocytes is blocked. The constitutively overexpressed c-myc in the ABL-MYC retrovirus abrogates this block, permits maturation of infected immature B cells, and yields transformed plasma cells.


2007 ◽  
Vol 81 (19) ◽  
pp. 10777-10785 ◽  
Author(s):  
Samuel L. Murphy ◽  
Glen N. Gaulton

ABSTRACT Infection with murine leukemia virus (MLV) TR1.3 or the related molecular construct W102G causes severe neuropathology in vivo. Infection is causally linked to the development of extensive syncytia in brain capillary endothelial cells (BCEC). These viruses also induce cell fusion of murine cell lines, such as SC-1 and NIH 3T3, which are otherwise resistant to MLV-induced syncytium formation. Although the virulence of these viruses maps within the env gene, the mechanism of fusion enhancement is not fully determined. To this end, we examined the capacity of the syncytium-inducing (SI) TR1.3 and W102G MLVs to overcome the fusion inhibitory activity inherent in the full-length Env cytoplasmic tail. These studies showed that the TR1.3 and W102G Envs did not induce premature cleavage of p2E, nor did they override p2E fusion inhibition. Indeed, in the presence of mutations that disrupt p2E function, the TR1.3 and W102G Envs significantly increased the extent of cell fusion compared to that with the non-syncytium-inducing MLV FB29. Surprisingly, we also observed that TR1.3 and W102G Envs failed to elicit syncytium formation in these in vitro assays. Coexpression of gag-pol with env restored syncytium formation, and accordingly, mutations within gag-pol were used to examine the minimal functional requirements for the SI phenotype. The results indicate that both gag-dependent particle budding and cleavage of p2E are required to activate the SI phenotype of TR1.3 and W102G viruses. Collectively, these data suggest that the TR1.3 and W102G viruses induce cell fusion by the fusion-from-without pathway.


1982 ◽  
Vol 156 (3) ◽  
pp. 873-887 ◽  
Author(s):  
J H Pierce ◽  
S A Aaronson

BALB- and Harvey-murine sarcoma viruses (MSV) comprise a family of retroviruses whose mouse- and rat-derived onc genes are closely related. These viruses induce sarcomas and erythroleukemias in susceptible animals. An in vitro colony assay that detects transformation of lymphoid cells by Abelson-murine leukemia virus was used to demonstrate that BALB- and Harvey-MSV transform a novel hematopoietic cell both in culture and in vivo. Bone marrow colony formation was sarcoma virus dependent, followed single-hit kinetics, and required the presence of mercaptoethanol in the agar medium. BALB- and Harvey-MSV-induced colonies could be established in culture as continuous cell lines that demonstrated unrestricted self-renewal capacity and leukemogenicity in vivo. The cells had a blast cell morphology and lacked detectable markers of mature cells within the myeloid or erythroid series. They also lacked detectable immunoglobulin mu chain or Thy-1 antigen, markers normally associated with committed cells of the B and T lymphoid lineages, respectively. However, the transformants contained very high levels of terminal deoxynucleotidyl transferase (TdT), an enzyme believed to be specific to early stages within the lymphoid differentiation pathway. This phenotype distinguishes these BALB- and Harvey-MSV transformants from any previously reported hematopoietic targets of transforming retroviruses, including the pre-B lymphoid cell transformed by Abelson-MuLV under identical assay conditions. These newly identified lymphoid progenitor cell transformants may provide an important means of studying early stages of lymphoid ontogeny and the possible role of TdT in lymphoid development.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 125-133 ◽  
Author(s):  
C. Queva ◽  
S.A. Ness ◽  
F.A. Grasser ◽  
T. Graf ◽  
B. Vandenbunder ◽  
...  

The v-myb oncogene of the acute avian leukemia virus E26 encodes a transcription factor that directly regulates the promyelocyte-specific mim-1 gene (Ness, S.A., Marknell, A. and Graf, T. Cell, 59, 1115–1125). We have investigated the relationship between the c-myb proto-oncogene and the transcription of the mim-1 gene both in vitro and in vivo. We demonstrate that the c-myb protein can transactivate the transcription of mim-1 in a transient transfection assay. In the chick embryo, we confirm that mim-1 is specifically expressed during granulopoiesis and we show that the expression of c-myb and mim-1 are perfectly correlated in the granulocytic spleen and pancreas. However we suggest that mim-1 is efficiently transcribed in the absence of c-myb in the yolk sac and in the promyelocytes at the onset of the colonization of the bursa of Fabricius. On the other hand c-myb transcripts detected in the early hemopoietic progenitor cells, in lymphoid cells and in proliferative epithelia are never associated with mim-1 transcription. We conclude that the granulocyte-specific mim-1 gene is regulated by c-myb-dependent and c-myb-independent mechanisms depending upon the environment in which granulocytic precursor cells differentiate.


1993 ◽  
Vol 13 (4) ◽  
pp. 2578-2585
Author(s):  
E M Weissinger ◽  
H Mischak ◽  
J Goodnight ◽  
W F Davidson ◽  
J F Mushinski

Abelson murine leukemia virus (A-MuLV), a retrovirus that expresses the v-abl oncogene, characteristically induces pre-B-cell lymphomas following in vivo infection of BALB/c mice or in vitro infection of suspensions of fetal liver or bone marrow cells. ABL-MYC, a retrovirus that expresses both v-abl and c-myc, induces solely plasmacytomas in BALB/c mice. To investigate how the addition of overexpression of c-myc to that of v-abl accomplishes this dramatic change in the phenotype of the cells transformed by these closely related retroviruses, we utilized helper-free A-MuLV (psi 2) and ABL-MYC (psi 2) in vitro to infect suspensions of cells from different lymphoid tissues and purified immature and purified mature B cells. As expected, A-MuLV(psi 2) induced only pre-B-cell lymphomas in vivo and in vitro when immature B cells were present. ABL-MYC(psi 2), on the other hand, produced only plasmacytomas, even when purified immature B lymphocytes were infected in vitro. Although the A-MuLV(psi 2)-induced pre-B-cell lymphomas express easily detectable levels of c-myc mRNA, maturation into more-mature forms of B lymphocytes is blocked. The constitutively overexpressed c-myc in the ABL-MYC retrovirus abrogates this block, permits maturation of infected immature B cells, and yields transformed plasma cells.


2005 ◽  
Vol 79 (23) ◽  
pp. 14536-14545 ◽  
Author(s):  
Li Xie ◽  
Patrick L. Green

ABSTRACT Human T-cell leukemia virus type 1 (HTLV-1) and HTLV-2 are related deltaretroviruses but are distinct in their disease-inducing capacity. These viruses can infect a variety of cell types, but only T lymphocytes become transformed, which is defined in vitro as showing indefinite interleukin-2-independent growth. Studies have indicated that HTLV-1 has a preferential tropism for CD4+ T cells in vivo and is associated with the development of leukemia and neurological disease. Conversely, the in vivo T-cell tropism of HTLV-2 is less clear, although it appears that CD8+ T cells preferentially harbor the provirus, with only a few cases of disease association. The difference in T-cell transformation tropism has been confirmed in vitro as shown by the preferential transformation of CD4+ T cells by HTLV-1 versus the transformation of CD8+ T cells by HTLV-2. Our previous studies showed that Tax and overlapping Rex do not confer the distinct T-cell transformation tropisms between HTLV-1 and HTLV-2. Therefore, for this study HTLV-1 and HTLV-2 recombinants were generated to assess the contribution of LTR and env sequences in T-cell transformation tropism. Both sets of proviral recombinants expressed p19 Gag following transfection into cells. Furthermore, recombinant viruses were replication competent and had the capacity to transform T lymphocytes. Our data showed that exchange of the env gene resulted in altered T-cell transformation tropism compared to wild-type virus, while exchange of long terminal repeat sequences had no significant effect. HTLV-2/Env1 preferentially transformed CD4+ Tcells similarly to wild-type HTLV-1 (wtHTLV-1), whereas HTLV-1/Env2 had a transformation tropism similar to that of wtHTLV-2 (CD8+ T cells). These results indicate that env is a major viral determinant for HTLV T-cell transformation tropism in vitro and provides strong evidence implicating its contribution to the distinct pathogenesis resulting from HTLV-1 versus HTLV-2 infections.


Sign in / Sign up

Export Citation Format

Share Document