scholarly journals Canine Distemper Virus and Measles Virus Fusion Glycoprotein Trimers: Partial Membrane-Proximal Ectodomain Cleavage Enhances Function

2004 ◽  
Vol 78 (15) ◽  
pp. 7894-7903 ◽  
Author(s):  
Veronika von Messling ◽  
Dragana Milosevic ◽  
Patricia Devaux ◽  
Roberto Cattaneo

ABSTRACT The trimeric fusion (F) glycoproteins of morbilliviruses are activated by furin cleavage of the precursor F0 into the F1 and F2 subunits. Here we show that an additional membrane-proximal cleavage occurs and modulates F protein function. We initially observed that the ectodomain of approximately one in three measles virus (MV) F proteins is cleaved proximal to the membrane. Processing occurs after cleavage activation of the precursor F0 into the F1 and F2 subunits, producing F1a and F1b fragments that are incorporated in viral particles. We also detected the F1b fragment, including the transmembrane domain and cytoplasmic tail, in cells expressing the canine distemper virus (CDV) or mumps virus F protein. Six membrane-proximal amino acids are necessary for efficient CDV F1a/b cleavage. These six amino acids can be exchanged with the corresponding MV F protein residues of different sequence without compromising function. Thus, structural elements of different sequence are functionally exchangeable. Finally, we showed that the alteration of a block of membrane-proximal amino acids results in diminished fusion activity in the context of a recombinant CDV. We envisage that selective loss of the membrane anchor in the external subunits of circularly arranged F protein trimers may disengage them from pulling the membrane centrifugally, thereby facilitating fusion pore formation.

2008 ◽  
Vol 82 (21) ◽  
pp. 10510-10518 ◽  
Author(s):  
Danielle E. Anderson ◽  
Veronika von Messling

ABSTRACT Morbilliviruses, including measles and canine distemper virus (CDV), are nonsegmented, negative-stranded RNA viruses that cause severe diseases in humans and animals. The transcriptional units in their genomes are separated by untranslated regions (UTRs), which contain essential transcription and translation signals. Due to its increased length, the region between the matrix (M) protein and fusion (F) protein open reading frames is of particular interest. In measles virus, the entire F 5′ region is untranslated, while several start codons are found in most other morbilliviruses, resulting in a long F protein signal peptide (Fsp). To characterize the role of this region in morbillivirus pathogenesis, we constructed recombinant CDVs, in which either the M-F UTR was replaced with that between the nucleocapsid (N) and phosphoprotein (P) genes, or 106 Fsp residues were deleted. The Fsp deletion alone had no effect in vitro and in vivo. In contrast, substitution of the UTR was associated with a slight increase in F gene and protein expression. Animals infected with this virus either recovered completely or experienced prolonged disease and death due to neuroinvasion. The combination of both changes resulted in a virus with strongly increased F gene and protein expression and complete attenuation. Taken together, our results provide evidence that the region between the morbillivirus M and F genes modulates virulence through transcriptional control of the F gene expression.


2006 ◽  
Vol 87 (6) ◽  
pp. 1635-1642 ◽  
Author(s):  
K. Singethan ◽  
E. Topfstedt ◽  
S. Schubert ◽  
W. P. Duprex ◽  
B. K. Rima ◽  
...  

Antibodies to CD9, a member of the tetraspan transmembrane-protein family, selectively inhibit Canine distemper virus (CDV)-induced cell–cell fusion. Neither CDV-induced virus–cell fusion nor cell–cell fusion induced by the closely related morbillivirus Measles virus (MV) is affected by anti-CD9 antibodies. As CDV does not bind CD9, an unknown, indirect mechanism is responsible for the observed inhibition of cell–cell fusion. It was investigated whether this effect was restricted to only one viral glycoprotein, either the haemagglutinin (H) or the fusion (F) protein, which form a fusion complex on the surface of virions and infected cells, or whether it is dependent on both in transient co-transfection assays. The susceptibility to CD9 antibodies segregates with the H protein of CDV. By exchanging portions of the H proteins of CDV and MV, it was determined that the complete extracellular domain, including the predicted stem structure (stem 1, barrel strand 1 and stem 2) and globular head domain, of the CDV-H protein mediates the effect. This suggests that interaction of the CDV-H protein with an unknown cellular receptor(s) is regulated by CD9, rather than F protein-mediated membrane fusion.


Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 128
Author(s):  
Neeta Shrestha ◽  
Flavio M. Gall ◽  
Jonathan Vesin ◽  
Marc Chambon ◽  
Gerardo Turcatti ◽  
...  

Canine distemper virus (CDV), a close relative of the human pathogen measles virus (MeV), is an enveloped, negative sense RNA virus that belongs to the genus Morbillivirus and causes severe diseases in dogs and other carnivores. Although the vaccination is available as a preventive measure against the disease, the occasional vaccination failure highlights the importance of therapeutic alternatives such as antivirals against CDV. The morbilliviral cell entry system relies on two interacting envelope glycoproteins: the attachment (H) and fusion (F) proteins. Here, to potentially discover novel entry inhibitors targeting CDV H, F and/or the cognate receptor: signaling lymphocyte activation molecule (SLAM) proteins, we designed a quantitative cell-based fusion assay that matched high-throughput screening (HTS) settings. By screening two libraries of small molecule compounds, we successfully identified two membrane fusion inhibitors (F2736-3056 and F2261-0043). Although both inhibitors exhibited similarities in structure and potency with the small molecule compound 3G (an AS-48 class morbilliviral F-protein inhibitor), F2736-3056 displayed improved efficacy in blocking fusion activity when a 3G-escape variant was employed. Altogether, we present a cell-based fusion assay that can be utilized not only to discover antiviral agents against CDV but also to dissect the mechanism of morbilliviral-mediated cell-binding and cell-to-cell fusion activity.


Viruses ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 688 ◽  
Author(s):  
Miguel Angel Muñoz-Alía ◽  
Stephen J. Russell

Measles virus (MeV) is monotypic. Live virus challenge provokes a broadly protective humoral immune response that neutralizes all known measles genotypes. The two surface glycoproteins, H and F, mediate virus attachment and entry, respectively, and neutralizing antibodies to H are considered the main correlate of protection. Herein, we made improvements to the MeV reverse genetics system and generated a panel of recombinant MeVs in which the globular head domain or stalk region of the H glycoprotein or the entire F protein, or both, were substituted with the corresponding protein domains from canine distemper virus (CDV), a closely related morbillivirus that resists neutralization by measles-immune sera. The viruses were tested for sensitivity to human or guinea pig neutralizing anti-MeV antisera and to ferret anti-CDV antisera. Virus neutralization was mediated by antibodies to both H and F proteins, with H being immunodominant in the case of MeV and F being so in the case of CDV. Additionally, the globular head domains of both MeV and CDV H proteins were immunodominant over their stalk regions. These data shed further light on the factors constraining the evolution of new morbillivirus serotypes.


2020 ◽  
Vol 95 (1) ◽  
Author(s):  
Nicole P. Kadzioch ◽  
Matthieu Gast ◽  
Francesco Origgi ◽  
Philippe Plattet

ABSTRACT The canine distemper virus (CDV) matrix (M) protein is multifunctional; it orchestrates viral assembly and budding, drives the formation of virus-like particles (VLPs), regulates viral RNA synthesis, and may support additional functions. CDV M may assemble into dimers, where each protomer is constituted by N-terminal and C-terminal domains (NTD and CTD, respectively). Here, to investigate whether electrostatic interactions between CDV M and the plasma membrane (PM) may contribute to budding activity, selected surface-exposed positively charged lysine residues, which are located within a large basic patch of CTD, were replaced by amino acids with selected properties. We found that some M mutants harboring amino acids with neutral and positive charge (methionine and arginine, respectively) maintained full functionality, including proper interaction and localization with the PM as well as intact VLP and progeny virus production as demonstrated by employing a cell exit-complementation system. Conversely, while the overall structural integrity remained mostly unaltered, most of the nonconservative M variants (carrying a glutamic acid; negatively charged) exhibited a cytosolic phenotype secondary to the lack of interaction with the PM. Consequently, such M variants were entirely defective in VLP production and viral particle formation. Furthermore, the proteasome inhibitor bortezomib significantly reduced wild-type M-mediated VLP production. Nevertheless, in the absence of the compound, all engineered M lysine variants exhibited unaffected ubiquitination profiles, consistent with other residues likely involved in this functionally essential posttranslational modification. Altogether, our data identified multiple surface-exposed lysine residues located within a basic patch of CDV M-CTD, critically contributing to PM association and ensuing membrane budding activity. IMPORTANCE Although vaccines against some morbilliviruses exist, infections still occur, which can result in dramatic brain disease or fatal outcome. Postexposure prophylaxis with antivirals would support global vaccination campaigns. Unfortunately, there is no efficient antiviral drug currently approved. The matrix (M) protein of morbilliviruses coordinates viral assembly and egress through interaction with multiple cellular and viral components. However, molecular mechanisms supporting these functions remain poorly understood, which preclude the rationale design of inhibitors. Here, to investigate potential interactions between canine distemper virus (CDV) M and the plasma membrane (PM), we combined structure-guided mutagenesis of selected surface-exposed lysine residues with biochemical, cellular, and virological assays. We identified several lysines clustering in a basic patch microdomain of the CDV M C-terminal domain, which contributed to PM association and budding activity. Our findings provide novel mechanistic information of how morbilliviruses assemble and egress from infected cells, thereby delivering bases for future antiviral drug development.


2006 ◽  
Vol 80 (19) ◽  
pp. 9361-9370 ◽  
Author(s):  
Penny A. Rudd ◽  
Roberto Cattaneo ◽  
Veronika von Messling

ABSTRACT Canine distemper virus (CDV), a member of the Morbillivirus genus that also includes measles virus, frequently causes neurologic complications, but the routes and timing of CDV invasion of the central nervous system (CNS) are poorly understood. To characterize these events, we cloned and sequenced the genome of a neurovirulent CDV (strain A75/17) and produced an infectious cDNA that expresses the green fluorescent protein. This virus fully retained its virulence in ferrets: the course and signs of disease were equivalent to those of the parental isolate. We observed CNS invasion through two distinct pathways: anterogradely via the olfactory nerve and hematogenously through the choroid plexus and cerebral blood vessels. CNS invasion only occurred after massive infection of the lymphatic system and spread to the epithelial cells throughout the body. While at early time points, mostly immune and endothelial cells were infected, the virus later spread to glial cells and neurons. Together, the results suggest similarities in the timing, target cells, and CNS invasion routes of CDV, members of the Morbillivirus genus, and even other neurovirulent paramyxoviruses like Nipah and mumps viruses.


1981 ◽  
Vol 27 (10) ◽  
pp. 1128-1131 ◽  
Author(s):  
C. K. Ho ◽  
L. A. Babiuk

Measles virus was shown to be infectious to canine lymphocytes from peripheral blood as well as from different lymphoid tissues, and the same held true for canine macrophage cultures prepared from peripheral blood. The susceptibility of these leucocytes to measles virus was comparable with that of canine distemper virus. These observations supported the suggestion that interference with canine distemper virus by measles virus could be a possible mechanism of the heterotypic immunity observed in dogs.


Sign in / Sign up

Export Citation Format

Share Document