scholarly journals Human Cytomegalovirus UL131 Open Reading Frame Is Required for Epithelial Cell Tropism

2005 ◽  
Vol 79 (16) ◽  
pp. 10330-10338 ◽  
Author(s):  
Dai Wang ◽  
Thomas Shenk

ABSTRACT Epithelial cells are one of the prominent cell types infected by human cytomegalovirus (HCMV) within its host. However, many cultured epithelial cells, such as ARPE-19 retinal pigmented epithelial cells, are poorly infected by laboratory-adapted strains in cell culture, and little is known about the viral factors that determine HCMV epithelial cell tropism. In this report, we demonstrate that the UL131 open reading frame (ORF), and likely the entire UL131-128 locus, is required for efficient infection of epithelial cells. Repair of the mutated UL131 gene in the AD169 laboratory strain of HCMV restored its ability to infect both epithelial and endothelial cells while compromising its ability to replicate in fibroblasts. ARPE-19 epithelial cells support replication of the repaired AD169 virus as well as clinical isolates of HCMV. Productive infection of cultured epithelial cells, endothelial cells, and fibroblasts with the repaired AD169 virus leads to extensive membrane fusion and syncytium formation, suggesting that the virus may spread through cell-cell fusion.

Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Gerna ◽  
Kabanova ◽  
Lilleri

In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.


2016 ◽  
Vol 90 (14) ◽  
pp. 6216-6223 ◽  
Author(s):  
Giuseppe Gerna ◽  
Elena Percivalle ◽  
Laurent Perez ◽  
Antonio Lanzavecchia ◽  
Daniele Lilleri

ABSTRACTHuman cytomegalovirus (HCMV) may cause disseminated/end-organ disease in congenitally infected newborns and immunosuppressed transplant recipients. Two glycoprotein complexes, gH/gL/gO and gH/gL/pUL128/pUL130/pUL131 (gH/gL/pUL128L; referred to as the pentamer), are required for HCMV entry into fibroblasts and endothelial/epithelial cells, respectively, in the presence of the viral fusion protein gB. In addition, gH/gL/gO was recently reported to also be required for infection of endothelial/epithelial cells. Virus entry into human fibroblasts involves fusion of the virus envelope with the plasma membrane, whereas entry into endothelial/epithelial cells involves macropinocytosis or endocytosis and low-pH-dependent fusion with endosomes. A large set of neutralizing monoclonal antibodies (MAbs), directed to gH, gB, and multiple components of the pentamer, was developed. In addition, novel anti-gO human monoclonal antibodies were recently isolated. It is known that epithelial cell infection with a wild HCMV strain at a high multiplicity of infection produces a large number of syncytia. Incubation of heavily HCMV VR1814-infected ARPE-19 epithelial cells with neutralizing MAbs to one, two, or three components of the pUL128L portion of the pentamer blocked syncytium formation at an antibody concentration of 10 μg/ml, whereas only a partial inhibitory effect was displayed for MAbs to gO, gH, or gB at the same concentration. A blocking effect was also exhibited by convalescent-phase sera from primary HCMV infections. These findings indicate that the pentamer is required for syncytium formation in epithelial cells.IMPORTANCEHuman cytomegalovirus (HCMV) mostly infects epithelial and endothelial cellsin vivo. Recently, the pentamer protein complex (gH/gL/pUL128L) was identified as being required for infection of these cells, in association with the other protein complex, gH/gL/gO. In primary infections, HCMV migrates to endothelial cells and then to leukocytes, which disseminate the infection throughout the body. The virus then spreads to organs and tissues, mostly infecting either single cells or multinucleated epithelial giant cells (syncytia), depending on the viral load. Potent neutralizing human MAbs directed to distinct binding sites of the pUL128L portion of the pentamer were shown in the past to block virus dissemination. In the present study, MAbs to pUL128L were shown to block syncytium formation with a higher potency than that of MAbs to gO, gH, or gB, thus suggesting their role in limiting virus dissemination. This finding provides additional information useful for the development of anti-HCMV therapeutic antibodies and subunit vaccines.


1999 ◽  
Vol 73 (10) ◽  
pp. 8330-8337 ◽  
Author(s):  
John P. Alderete ◽  
Sohail Jarrahian ◽  
Adam P. Geballe

ABSTRACT The human cytomegalovirus (HCMV) gpUL4 mRNA contains a 22-codon upstream open reading frame (uORF2), the peptide product of which represses downstream translation by blocking translation termination at its own stop codon and by causing ribosomes to stall on the mRNA. A distinctive feature of this unusual mechanism is its strict dependence on the uORF2 peptide sequence. To delineate sequence elements that function in the inhibitory mechanism, deletions and missense mutations affecting the previously uncharacterized amino-terminal region of uORF2 were analyzed in transient-transfection and infection assays. These experiments identified multiple codons in this region that are necessary for inhibition of downstream translation by uORF2 and, in conjunction with previous results, demonstrated that amino acids dispersed throughout the uORF2 peptide participate in the repressive mechanism. In contrast to the highly conserved carboxy terminus, the amino-terminal portion of the uORF2 peptide is polymorphic. A survey of uORF2 sequences in HCMV clinical isolates revealed that although most have uORF2 sequences that are predicted to retain the uORF2 inhibitory activity, ∼15% contain polymorphisms at codons that are essential for full inhibition by uORF2. Consistent with predictions based on analyses of engineered mutations, two viral isolates with uORF2 sequences that do not inhibit downstream translation in transfection assays expressed much more gpUL4 protein but similar levels of UL4 mRNA compared to the levels produced by the prototypic laboratory strain HCMV (Towne) and another clinical isolate with an inhibitory variant uORF2. These results demonstrate that uORF2 is polymorphic in sequence and repressive activity and suggest that the uORF2 regulatory mechanism, although prevalent among natural HCMV isolates, is not absolutely essential for viral replication.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ahmed Al Qaffas ◽  
Salvatore Camiolo ◽  
Mai Vo ◽  
Alexis Aguiar ◽  
Amine Ourahmane ◽  
...  

AbstractThe advent of whole genome sequencing has revealed that common laboratory strains of human cytomegalovirus (HCMV) have major genetic deficiencies resulting from serial passage in fibroblasts. In particular, tropism for epithelial and endothelial cells is lost due to mutations disrupting genes UL128, UL130, or UL131A, which encode subunits of a virion-associated pentameric complex (PC) important for viral entry into these cells but not for entry into fibroblasts. The endothelial cell-adapted strain TB40/E has a relatively intact genome and has emerged as a laboratory strain that closely resembles wild-type virus. However, several heterogeneous TB40/E stocks and cloned variants exist that display a range of sequence and tropism properties. Here, we report the use of PacBio sequencing to elucidate the genetic changes that occurred, both at the consensus level and within subpopulations, upon passaging a TB40/E stock on ARPE-19 epithelial cells. The long-read data also facilitated examination of the linkage between mutations. Consistent with inefficient ARPE-19 cell entry, at least 83% of viral genomes present before adaptation contained changes impacting PC subunits. In contrast, and consistent with the importance of the PC for entry into endothelial and epithelial cells, genomes after adaptation lacked these or additional mutations impacting PC subunits. The sequence data also revealed six single noncoding substitutions in the inverted repeat regions, single nonsynonymous substitutions in genes UL26, UL69, US28, and UL122, and a frameshift truncating gene UL141. Among the changes affecting protein-coding regions, only the one in UL122 was strongly selected. This change, resulting in a D390H substitution in the encoded protein IE2, has been previously implicated in rendering another viral protein, UL84, essential for viral replication in fibroblasts. This finding suggests that IE2, and perhaps its interactions with UL84, have important functions unique to HCMV replication in epithelial cells.


2001 ◽  
Vol 75 (22) ◽  
pp. 11218-11221 ◽  
Author(s):  
Brendan N. Lilley ◽  
Hidde L. Ploegh ◽  
Rebecca S. Tirabassi

ABSTRACT Several herpesviruses encode Fc receptors that may play a role in preventing antibody-mediated clearance of the virus in vivo. Human cytomegalovirus (HCMV) induces an Fc-binding activity in cells upon infection, but the gene that encodes this Fc-binding protein has not been identified. Here, we demonstrate that the HCMV AD169 open reading frame TRL11 and its identical copy, IRL11, encode a type I membrane glycoprotein that possesses IgG Fc-binding capabilities.


2002 ◽  
Vol 76 (3) ◽  
pp. 1450-1460 ◽  
Author(s):  
S. Spaderna ◽  
H. Blessing ◽  
E. Bogner ◽  
W. Britt ◽  
M. Mach

ABSTRACT Human cytomegalovirus (HCMV) has a coding capacity for glycoproteins which far exceeds that of other herpesviruses. Few of these proteins have been characterized. We have investigated the gene product(s) of reading frame 10, which is present in both the internal and terminal repeat regions of HCMV strain AD169 and only once in clinical isolates. The putative protein product is a 171-amino-acid glycoprotein with a theoretical mass of 20.5 kDa. We characterized the protein encoded by this reading frame in the laboratory strain AD169 and a recent isolate, TB40E. The results from both strains were comparable. Northern blot analyses showed that the gene was transcribed with early/late kinetics. Two proteins of 22 and 23.5-kDa were detected in virus-infected cells and in cells transiently expressing recombinant TRL10. Both forms contained only high-mannose-linked carbohydrate modifications. In addition, virus-infected cells expressed small amounts of the protein modified with complex N-linked sugars. Image analysis localized transiently expressed TRL10 to the endoplasmic reticulum. Immunoblot analyses as well as immunoelectron microscopy of purified virions demonstrated that TRL10 represents a structural component of the virus particle. Immunoblot analysis in the absence of reducing agents indicated that TRL10, like the other HCMV envelope glycoproteins, is present in a disulfide-linked complex. Sequence analysis of the TRL10 coding region in nine low-passage clinical isolates revealed strain-specific variation. In summary, the protein product of the TRL10 open reading frame represents a novel structural glycoprotein of HCMV and was termed gpTRL10.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 370-376 ◽  
Author(s):  
GD Almeida ◽  
CD Porada ◽  
S St Jeor ◽  
JL Ascensao

Abstract In an effort to study whether human cytomegalovirus (HCMV) can disrupt the balanced cytokine network that controls human hematopoiesis, we investigated the ability of a laboratory strain HCMV (AD169) to alter the production of interleukin-6 (IL-6) by cultured endothelial cells (HUVECs). ECs are important components of human bone marrow stroma and produce factors that stimulate the proliferation and differentiation of human hematopoietic progenitors. HCMV was able to greatly increase production of both mRNA and protein for IL-6 in unprimed HUVECs. When we discriminated between viral pellet and cleared viral supernatants, the supernatants induced an increase in mRNA at 30 minutes and protein by 2 hours, whereas an increase in IL-6 caused by virus itself did not become evident until 12 hours. The possibility that IL-6 induction was simply caused by the presence in the viral stock of endotoxin, IL-1 alpha, IL-1 beta, tumor necrosis factor alpha, or IL-4, all known inducers of IL-6 in HUVECs, was ruled out by the addition of polymyxin B and appropriate neutralizing antibodies. These findings show that HCMV is capable of directly and indirectly modulating the production by HUVECs of IL-6, one of the cytokines involved in the process of hematopoiesis.


Sign in / Sign up

Export Citation Format

Share Document