scholarly journals The Cellular Protein Daxx Interacts with Avian Sarcoma Virus Integrase and Viral DNA To Repress Viral Transcription

2005 ◽  
Vol 79 (8) ◽  
pp. 4610-4618 ◽  
Author(s):  
James G. Greger ◽  
Richard A. Katz ◽  
Alexander M. Ishov ◽  
Gerd G. Maul ◽  
Anna Marie Skalka

ABSTRACT The cellular protein Daxx was identified as an interactor with avian sarcoma virus (ASV) integrase (IN) in a yeast two-hybrid screen. After infection, Daxx-IN interactions were detected by coimmunoprecipitation. An association between Daxx and viral DNA, likely mediated by IN, was also detected by chromatin immunoprecipitation. Daxx was not required for early events in ASV replication, including integration, as Daxx-null cells were transduced as efficiently as Daxx-expressing cells. However, viral reporter gene expression from ASV-based vectors was substantially higher in the Daxx-null cells than in Daxx-complemented cells. Consistent with this observation, histone deacetylases (HDACs) were found to associate with viral DNA in Daxx-complemented cells but not in Daxx-null cells. Furthermore, Daxx protein was induced in an interferon-like manner upon ASV infection. We conclude that Daxx interacts with an IN-viral DNA complex early after infection and may mediate the repression of viral gene expression via the recruitment of HDACs. Our findings provide a novel example of cellular immunity against viral replication in which viral transcription is repressed via the recruitment of antiviral proteins to the viral DNA.

1980 ◽  
Vol 210 (1180) ◽  
pp. 387-396 ◽  

The avian sarcoma virus transforming gene product has been identified and partially purified from extracts of transformed cells. It is a phosphoprotein with a relative molecular mass of 60 000 (pp60 src ) with two major sites of phosphorylation. pp60 src appears to be a cyclic-AMP-independent protein kinase as judged by protein phosphorylation with partly purified fractions. The specificity of the phosphorylation observed was judged by inhibition with anti-pp60 src IgG but not by normal IgG and by the fact that the protein kinase activity isolated from ts transformation-mutant infected cells was more thermolabile than that from wild-type transformed cells, thus showing more directly the origin of the enzymic activity. A cellular protein substrate of pp60 src has been identified as a 34000 molecular mass protein. These data together suggest that protein phosphorylation by pp60 src may be a function of the molecule that plays a major role in transformation.


Nature ◽  
1975 ◽  
Vol 253 (5492) ◽  
pp. 507-511 ◽  
Author(s):  
Ramareddy V. Guntaka ◽  
Brian W. J. Mahy ◽  
J. Michael Bishop ◽  
Harold E. Varmus

mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Benjamin A. Diner ◽  
Krystal K. Lum ◽  
Jared E. Toettcher ◽  
Ileana M. Cristea

ABSTRACTThe human interferon-inducible protein IFI16 is an important antiviral factor that binds nuclear viral DNA and promotes antiviral responses. Here, we define IFI16 dynamics in space and time and its distinct functions from the DNA sensor cyclic dinucleotide GMP-AMP synthase (cGAS). Live-cell imaging reveals a multiphasic IFI16 redistribution, first to viral entry sites at the nuclear periphery and then to nucleoplasmic puncta upon herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) infections. Optogenetics and live-cell microscopy establish the IFI16 pyrin domain as required for nuclear periphery localization and oligomerization. Furthermore, using proteomics, we define the signature protein interactions of the IFI16 pyrin and HIN200 domains and demonstrate the necessity of pyrin for IFI16 interactions with antiviral proteins PML and cGAS. We probe signaling pathways engaged by IFI16, cGAS, and PML using clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9-mediated knockouts in primary fibroblasts. While IFI16 induces cytokines, only cGAS activates STING/TBK-1/IRF3 and apoptotic responses upon HSV-1 and HCMV infections. cGAS-dependent apoptosis upon DNA stimulation requires both the enzymatic production of cyclic dinucleotides and STING. We show that IFI16, not cGAS or PML, represses HSV-1 gene expression, reducing virus titers. This indicates that regulation of viral gene expression may function as a greater barrier to viral replication than the induction of antiviral cytokines. Altogether, our findings establish coordinated and distinct antiviral functions for IFI16 and cGAS against herpesviruses.IMPORTANCEHow mammalian cells detect and respond to DNA viruses that replicate in the nucleus is poorly understood. Here, we decipher the distinct functions of two viral DNA sensors, IFI16 and cGAS, during active immune signaling upon infection with two herpesviruses, herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV). We show that IFI16 rapidly oligomerizes at incoming herpesvirus genomes at the nuclear periphery to transcriptionally repress viral gene expression and limit viral replicative capacity. We further demonstrate that IFI16 does not initiate upstream activation of the canonical STING/TBK-1/IRF3 signaling pathway but is required for downstream antiviral cytokine expression. In contrast, we find that, upon DNA sensing during herpesvirus infection, cGAS triggers apoptosis in a STING-dependent manner. Our live-cell imaging, mass spectrometry-based proteomics, CRISPR-based cellular assays, and optogenetics underscore the value of integrative approaches to uncover complex cellular responses against pathogens.


1999 ◽  
Vol 73 (7) ◽  
pp. 5757-5766 ◽  
Author(s):  
James Chambers ◽  
Ana Angulo ◽  
Dhammika Amaratunga ◽  
Hongqing Guo ◽  
Ying Jiang ◽  
...  

ABSTRACT We describe, for the first time, the generation of a viral DNA chip for simultaneous expression measurements of nearly all known open reading frames (ORFs) in the largest member of the herpesvirus family, human cytomegalovirus (HCMV). In this study, an HCMV chip was fabricated and used to characterize the temporal class of viral gene expression. The viral chip is composed of microarrays of viral DNA prepared by robotic deposition of oligonucleotides on glass for ORFs in the HCMV genome. Viral gene expression was monitored by hybridization to the oligonucleotide microarrays with fluorescently labelled cDNAs prepared from mock-infected or infected human foreskin fibroblast cells. By using cycloheximide and ganciclovir to block de novo viral protein synthesis and viral DNA replication, respectively, the kinetic classes of array elements were classified. The expression profiles of known ORFs and many previously uncharacterized ORFs provided a temporal map of immediate-early (α), early (β), early-late (γ1), and late (γ2) genes in the entire genome of HCMV. Sequence compositional analysis of the 5′ noncoding DNA sequences of the temporal classes, performed by using algorithms that automatically search for defined and recurring motifs in unaligned sequences, indicated the presence of potential regulatory motifs for β, γ1, and γ2 genes. In summary, these fabricated microarrays of viral DNA allow rapid and parallel analysis of gene expression at the whole viral genome level. The viral chip approach coupled with global biochemical and genetic strategies should greatly speed the functional analysis of established as well as newly discovered large viral genomes.


1983 ◽  
Vol 3 (10) ◽  
pp. 1746-1758
Author(s):  
B Mermer ◽  
M Malamy ◽  
J M Coffin

Several aspects of Rous sarcoma virus gene expression, including transcription, translation, and protein processing, can occur within Escherichia coli containing cloned viral DNA. The viral long terminal repeat contains a bacterial promoter, and viral sequences at or near the authentic viral initiation codon permit the initiation of translation. These signals can direct the synthesis in E. coli of the viral gag gene precursor Pr76 or, when fused to a portion of the lacZ gene, a gag-beta-galactosidase fusion protein. Pr76 is processed into gag structural proteins in E. coli in a process which is dependent upon the gag product p15. These observations suggest that E. coli can be used for the introduction and analysis of mutations in sequences relevant to viral gene expression.


2015 ◽  
Vol 90 (1) ◽  
pp. 486-496 ◽  
Author(s):  
Xiuji Cui ◽  
Daniel N. Clark ◽  
Kuancheng Liu ◽  
Xiao-Dong Xu ◽  
Ju-Tao Guo ◽  
...  

ABSTRACTHepatitis B virus (HBV) infects hundreds of millions of people worldwide and causes acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV is an enveloped virus with a relaxed circular (RC) DNA genome. In the nuclei of infected human hepatocytes, conversion of RC DNA from the incoming virion or cytoplasmic mature nucleocapsid (NC) to the covalently closed circular (CCC) DNA, which serves as the template for producing all viral transcripts, is essential to establish and sustain viral replication. A prerequisite for CCC DNA formation is the uncoating (disassembly) of NCs to expose their RC DNA content for conversion to CCC DNA. We report here that in an immortalized mouse hepatocyte cell line, AML12HBV10, in which RC DNA exposure is enhanced, the exposed viral DNA could trigger an innate immune response that was able to modulate viral gene expression and replication. When viral gene expression and replication were low, the innate response initially stimulated these processes but subsequently acted to shut off viral gene expression and replication after they reached peak levels. Inhibition of viral DNA synthesis or cellular DNA sensing and innate immune signaling diminished the innate response. These results indicate that HBV DNA, when exposed in the host cell cytoplasm, can function to trigger an innate immune response that, in turn, modulates viral gene expression and replication.IMPORTANCEChronic infection by hepatitis B virus (HBV) afflicts hundreds of millions worldwide and is sustained by the episomal covalently closed circular (CCC) DNA in the nuclei of infected hepatocytes. Release of viral genomic DNA from cytoplasmic nucleocapsids (NCs) (NC disassembly or uncoating) is a prerequisite for its conversion to CCC DNA, which can also potentially expose the viral DNA to host DNA sensors and trigger an innate immune response. We have found that in an immortalized mouse hepatocyte cell line in which efficient CCC DNA formation was associated with enhanced exposure of nucleocapsid-associated DNA, the exposed viral DNA indeed triggered host cytoplasmic DNA sensing and an innate immune response that was able to modulate HBV gene expression and replication. Thus, HBV can, under select conditions, be recognized by the host innate immune response through exposed viral DNA, which may be exploited therapeutically to clear viral persistence.


Sign in / Sign up

Export Citation Format

Share Document