scholarly journals Helicobacter pylori VacA Targets Myeloid Cells in the Gastric Lamina Propria To Promote Peripherally Induced Regulatory T-Cell Differentiation and Persistent Infection

mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Aleksandra Altobelli ◽  
Michael Bauer ◽  
Karelia Velez ◽  
Timothy L. Cover ◽  
Anne Müller

ABSTRACT The gastric bacterium Helicobacter pylori causes a persistent infection that is directly responsible for gastric ulcers and gastric cancer in some patients and protective against allergic and other immunological disorders in others. The two outcomes of the Helicobacter-host interaction can be modeled in mice that are infected as immunocompetent adults and as neonates, respectively. Here, we have investigated the contribution of the Helicobacter immunomodulator VacA to H. pylori-specific local and systemic immune responses in both models. We found that neonatally infected mice are colonized at higher levels than mice infected as adults and fail to generate effector T-cell responses to the bacteria; rather, T-cell responses in neonatally infected mice are skewed toward Foxp3-positive (Foxp3+) regulatory T cells that are neuropilin negative and express RORγt. We found these peripherally induced regulatory T cells (pTregs) to be enriched, in a VacA-dependent manner, not only in the gastric mucosa but also in the lungs of infected mice. Pulmonary pTreg accumulation was observed in mice that have been infected neonatally with wild-type H. pylori but not in mice that have been infected as adults or mice infected with a VacA null mutant. Finally, we traced VacA to gastric lamina propria myeloid cells and show that it suppressed interleukin-23 (IL-23) expression by dendritic cells and induced IL-10 and TGF-β expression in macrophages. Taken together, the results are consistent with the idea that H. pylori creates a tolerogenic environment through its immunomodulator VacA, which skews T-cell responses toward Tregs, favors H. pylori persistence, and affects immunity at distant sites. IMPORTANCE Helicobacter pylori has coexisted with humans for at least 60.000 years and has evolved persistence strategies that allow it to evade host immunity and colonize its host for life. The VacA protein is expressed by all H. pylori strains and is required for high-level persistent infection in experimental mouse models. Here, we show that VacA targets myeloid cells in the gastric mucosa to create a tolerogenic environment that facilitates regulatory T-cell differentiation, while suppressing effector T-cell priming and functionality. Tregs that are induced in the periphery during H. pylori infection can be found not only in the stomach but also in the lungs of infected mice, where they are likely to affect immune responses to allergens.


2011 ◽  
Vol 79 (7) ◽  
pp. 2737-2745 ◽  
Author(s):  
Ellen J. Beswick ◽  
Iryna V. Pinchuk ◽  
Rachel B. Earley ◽  
David A. Schmitt ◽  
Victor E. Reyes

ABSTRACTGastric epithelial cells (GECs) express the class II major histocompatibility complex (MHC) and costimulatory molecules, enabling them to act as antigen-presenting cells (APCs) and affect local T cell responses. DuringHelicobacter pyloriinfection, GECs respond by releasing proinflammatory cytokines and by increasing the surface expression of immunologically relevant receptors, including class II MHC. The CD4+T cell response duringH. pyloriinfection is skewed toward a Th1 response, but these cells remain hyporesponsive. Activated T cells show decreased proliferation duringH. pyloriinfection, and CD4+CD25+FoxP3+regulatory T cells (Tregs) are present at the site of infection. In this study, we examined the mechanisms surrounding the CD4+T cell responses duringH. pyloriinfection and found that transforming growth factor β (TGF-β) plays a major role in these responses. GECs produced TGF-β1 and TGF-β2 in response to infection. Activated CD4+T cells in culture withH. pylori-treated GECs were decreased in proliferation but increased upon neutralization of TGF-β. Naïve CD4+T cell development into Tregs was also enhanced in the presence of GEC-derived TGF-β. Herein, we demonstrate a role for GEC-produced TGF-β in the inhibition of CD4+T cell responses seen duringH. pyloriinfection.



2013 ◽  
Vol 81 (10) ◽  
pp. 3803-3813 ◽  
Author(s):  
Barbara Kronsteiner ◽  
Josep Bassaganya-Riera ◽  
Casandra Philipson ◽  
Monica Viladomiu ◽  
Adria Carbo ◽  
...  

ABSTRACTHelicobacter pyloriinfection is the leading cause for peptic ulcer disease and gastric adenocarcinoma. Mucosal T cell responses play an important role in mediatingH. pylori-related gastric immunopathology. While induced regulatory T (iTreg) cells are required for chronic colonization without disease, T helper 1 (Th1) effector responses are associated with lower bacterial loads at the expense of gastric pathology. Pigs were inoculated with eitherH. pyloristrain SS1 or J99. Phenotypic and functional changes in peripheral blood mononuclear cell (PBMC) populations were monitored weekly, and mucosal immune responses and bacterial loads were assessed up to 2 months postinfection. BothH. pyloristrains elicited a Th1 response characterized by increased percentages of CD4+Tbet+cells and elevated gamma interferon (IFN-γ) mRNA in PBMCs. A subset of CD8+T cells expressing Tbet and CD16 increased following infection. Moreover, a significant increase in perforin and granzyme mRNA expression was observed in PBMCs of infected pigs, indicating a predominant cytotoxic immune response. Infiltration of B cells, myeloid cells, T cells expressing Treg- and Th17-associated transcription factors, and cytotoxic T cells was found in the gastric lamina propria of both infected groups. Interestingly, based on bacterial reisolation data, strain SS1 showed greater capacity to colonize and/or persist in the gastric mucosa than did strain J99. This novel pig model of infection closely mimics human gastric pathology and presents a suitable avenue for studying effector and regulatory responses towardH. pyloridescribed in humans.



2017 ◽  
Vol 85 (8) ◽  
Author(s):  
Lucia Trotta ◽  
Kathleen Weigt ◽  
Katina Schinnerling ◽  
Anika Geelhaar-Karsch ◽  
Gerrit Oelkers ◽  
...  

ABSTRACT Classical Whipple's disease (CWD) is characterized by the lack of specific Th1 response toward Tropheryma whipplei in genetically predisposed individuals. The cofactor GrpE of heat shock protein 70 (Hsp70) from T. whipplei was previously identified as a B-cell antigen. We tested the capacity of Hsp70 and GrpE to elicit specific proinflammatory T-cell responses. Peripheral mononuclear cells from CWD patients and healthy donors were stimulated with T. whipplei lysate or recombinant GrpE or Hsp70 before levels of CD40L, CD69, perforin, granzyme B, CD107a, and gamma interferon (IFN-γ) were determined in T cells by flow cytometry. Upon stimulation with total bacterial lysate or recombinant GrpE or Hsp70 of T. whipplei, the proportions of activated effector CD4+ T cells, determined as CD40L+ IFN-γ+, were significantly lower in patients with CWD than in healthy controls; CD8+ T cells of untreated CWD patients revealed an enhanced activation toward unspecific stimulation and T. whipplei-specific degranulation, although CD69+ IFN-γ+ CD8+ T cells were reduced upon stimulation with T. whipplei lysate and recombinant T. whipplei-derived proteins. Hsp70 and its cofactor GrpE are immunogenic in healthy individuals, eliciting effective responses against T. whipplei to control bacterial spreading. The lack of specific T-cell responses against these T. whipplei-derived proteins may contribute to the pathogenesis of CWD.



2016 ◽  
Vol 84 (9) ◽  
pp. 2627-2638 ◽  
Author(s):  
Charles S. Rosenberg ◽  
Weibo Zhang ◽  
Juan M. Bustamante ◽  
Rick L. Tarleton

Trypanosoma cruziinfection drives the expansion of remarkably focused CD8+T cell responses targeting epitopes encoded by varianttrans-sialidase (TS) genes. Infection of C57BL/6 mice withT. cruziresults in up to 40% of all CD8+T cells committed to recognition of the dominant TSKB20 and subdominant TSKB18 TS epitopes. However, despite this enormous response, these mice fail to clearT. cruziinfection and subsequently develop chronic disease. One possible reason for the failure to cureT. cruziinfection is that immunodomination by these TS-specific T cells may interfere with alternative CD8+T cell responses more capable of complete parasite elimination. To address this possibility, we created transgenic mice that are centrally tolerant to these immunodominant epitopes. Mice expressing TSKB20, TSKB18, or both epitopes controlledT. cruziinfection and developed effector CD8+T cells that maintained an activated phenotype. Memory CD8+T cells from drug-cured TSKB-transgenic mice rapidly responded to secondaryT. cruziinfection. In the absence of the response to TSKB20 and TSKB18, immunodominance did not shift to other known subdominant epitopes despite the capacity of these mice to expand epitope-specific T cells specific for the model antigen ovalbumin expressed by engineered parasites. Thus, CD8+T cell responses tightly and robustly focused on a few epitopes within variant TS antigens appear to neither contribute to, nor detract from, the ability to controlT. cruziinfection. These data also indicate that the relative position of an epitope within a CD8+immunodominance hierarchy does not predict its importance in pathogen control.



2011 ◽  
Vol 79 (5) ◽  
pp. 2059-2069 ◽  
Author(s):  
Niall D. MacHugh ◽  
William Weir ◽  
Alison Burrells ◽  
Regina Lizundia ◽  
Simon P. Graham ◽  
...  

ABSTRACTAlthough parasite strain-restricted CD8 T cell responses have been described for several protozoa, the precise role of antigenic variability in immunity is poorly understood. The tick-borne protozoan parasiteTheileria annulatainfects leukocytes and causes an acute, often fatal lymphoproliferative disease in cattle. Building on previous evidence of strain-restricted CD8 T cell responses toT. annulata, this study set out to identify and characterize the variability of the target antigens. Three antigens were identified by screening expressed parasite cDNAs with specific CD8 T cell lines. In cattle expressing the A10 class I major histocompatibility complex haplotype, A10-restricted CD8 T cell responses were shown to be focused entirely on a single dominant epitope in one of these antigens (Ta9). Sequencing of the Ta9 gene from field isolates ofT. annulatademonstrated extensive sequence divergence, resulting in amino acid polymorphism within the A10-restricted epitope and a second A14-restricted epitope. Statistical analysis of the allelic sequences revealed evidence of positive selection for amino acid substitutions within the region encoding the CD8 T cell epitopes. Sequence differences in the A10-restricted epitope were shown to result in differential recognition by individual CD8 T cell clones, while clones also differed in their ability to recognize different alleles. Moreover, the representation of these clonal specificities within the responding CD8 T cell populations differed between animals. As well as providing an explanation for incomplete protection observed after heterologous parasite challenge of vaccinated cattle, these results have important implications for the choice of antigens for the development of novel subunit vaccines.



mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Adria Carbo ◽  
Danyvid Olivares-Villagómez ◽  
Raquel Hontecillas ◽  
Josep Bassaganya-Riera ◽  
Rupesh Chaturvedi ◽  
...  

ABSTRACTThe development of gastritis duringHelicobacter pyloriinfection is dependent on an activated adaptive immune response orchestrated by T helper (Th) cells. However, the relative contributions of the Th1 and Th17 subsets to gastritis and control of infection are still under investigation. To investigate the role of interleukin-21 (IL-21) in the gastric mucosa duringH. pyloriinfection, we combined mathematical modeling of CD4+T cell differentiation within vivomechanistic studies. We infected IL-21-deficient and wild-type mice withH. pyloristrain SS1 and assessed colonization, gastric inflammation, cellular infiltration, and cytokine profiles. ChronicallyH. pylori-infected IL-21-deficient mice had higherH. pyloricolonization, significantly less gastritis, and reduced expression of proinflammatory cytokines and chemokines compared to these parameters in infected wild-type littermates. Thesein vivodata were used to calibrate anH. pyloriinfection-dependent, CD4+T cell-specific computational model, which then described the mechanism by which IL-21 activates the production of interferon gamma (IFN-γ) and IL-17 during chronicH. pyloriinfection. The model predicted activated expression of T-bet and RORγt and the phosphorylation of STAT3 and STAT1 and suggested a potential role of IL-21 in the modulation of IL-10. Driven by our modeling-derived predictions, we found reduced levels of CD4+splenocyte-specifictbx21androrcexpression, reduced phosphorylation of STAT1 and STAT3, and an increase in CD4+T cell-specific IL-10 expression inH. pylori-infected IL-21-deficient mice. Our results indicate that IL-21 regulates Th1 and Th17 effector responses during chronicH. pyloriinfection in a STAT1- and STAT3-dependent manner, therefore playing a major role controllingH. pyloriinfection and gastritis.IMPORTANCEHelicobacter pyloriis the dominant member of the gastric microbiota in more than 50% of the world’s population.H. pyloricolonization has been implicated in gastritis and gastric cancer, as infection withH. pyloriis the single most common risk factor for gastric cancer. Current data suggest that, in addition to bacterial virulence factors, the magnitude and types of immune responses influence the outcome of colonization and chronic infection. This study uses a combined computational and experimental approach to investigate how IL-21, a proinflammatory T cell-derived cytokine, maintains the chronic proinflammatory T cell immune response driving chronic gastritis duringH. pyloriinfection. This research will also provide insight into a myriad of other infectious and immune disorders in which IL-21 is increasingly recognized to play a central role. The use of IL-21-related therapies may provide treatment options for individuals chronically colonized withH. pylorias an alternative to aggressive antibiotics.



Allergy ◽  
2021 ◽  
Author(s):  
Alba Angelina ◽  
Mario Pérez‐Diego ◽  
Angel Maldonado ◽  
Beate Rückert ◽  
Mübeccel Akdis ◽  
...  


Gut ◽  
2012 ◽  
Vol 61 (Suppl 2) ◽  
pp. A412.1-A412 ◽  
Author(s):  
R Liberal ◽  
C Grant ◽  
G Mieli-Vergani ◽  
D Vergani ◽  
M Longhi


Sign in / Sign up

Export Citation Format

Share Document