scholarly journals Comparative Genomics of Recent Shiga Toxin-Producing Escherichia coli O104:H4: Short-Term Evolution of an Emerging Pathogen

mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Yonatan H. Grad ◽  
Paul Godfrey ◽  
Gustavo C. Cerquiera ◽  
Patricia Mariani-Kurkdjian ◽  
Malika Gouali ◽  
...  

ABSTRACTThe large outbreak of diarrhea and hemolytic uremic syndrome (HUS) caused by Shiga toxin-producingEscherichia coliO104:H4 in Europe from May to July 2011 highlighted the potential of a rarely identifiedE. coliserogroup to cause severe disease. Prior to the outbreak, there were very few reports of disease caused by this pathogen and thus little known of its diversity and evolution. The identification of cases of HUS caused byE. coliO104:H4 in France and Turkey after the outbreak and with no clear epidemiological links raises questions about whether these sporadic cases are derived from the outbreak. Here, we report genome sequences of five independent isolates from these cases and results of a comparative analysis with historical and 2011 outbreak isolates. These analyses revealed that the five isolates are not derived from the outbreak strain; however, they are more closely related to the outbreak strain and each other than to isolates identified prior to the 2011 outbreak. Over the short time scale represented by these closely related organisms, the majority of genome variation is found within their mobile genetic elements: none of the nine O104:H4 isolates compared here contain the same set of plasmids, and their prophages and genomic islands also differ. Moreover, the presence of closely related HUS-associatedE. coliO104:H4 isolates supports the contention that fully virulent O104:H4 isolates are widespread and emphasizes the possibility of future food-borneE. coliO104:H4 outbreaks.IMPORTANCEIn the summer of 2011, a large outbreak of bloody diarrhea with a high rate of severe complications took place in Europe, caused by a previously rarely seenEscherichia colistrain of serogroup O104:H4. Identification of subsequent infections caused byE. coliO104:H4 raised questions about whether these new cases represented ongoing transmission of the outbreak strain. In this study, we sequenced the genomes of isolates from five recent cases and compared them with historical isolates. The analyses reveal that, in the very short term, evolution of the bacterial genome takes place in parts of the genome that are exchanged among bacteria, and these regions contain genes involved in adaptation to local environments. We show that these recent isolates are not derived from the outbreak strain but are very closely related and share many of the same disease-causing genes, emphasizing the concern that these bacteria may cause future severe outbreaks.

2011 ◽  
Vol 16 (24) ◽  
Author(s):  
F Scheutz ◽  
E Møller Nielsen ◽  
J Frimodt-Møller ◽  
N Boisen ◽  
S Morabito ◽  
...  

The Escherichia coli strain causing a large outbreak of haemolytic uraemic syndrome and bloody diarrhoea in Germany in May and June 2011 possesses an unusual combination of pathogenic features typical of enteroaggregative E. coli together with the capacity to produce Shiga toxin. Through rapid national and international exchange of information and strains the known occurrence in humans was quickly assessed. We describe simple diagnostic screening tools to detect the outbreak strain in clinical specimens and a novel real-time PCR for its detection in foods.


2015 ◽  
Vol 82 (5) ◽  
pp. 1475-1485 ◽  
Author(s):  
M. E. Diodati ◽  
A. H. Bates ◽  
W. G. Miller ◽  
M. Q. Carter ◽  
Y. Zhou ◽  
...  

ABSTRACTEscherichia coliO111 is an emerging non-O157:H7 serotype of Shiga toxin-producingE. coli(STEC). We previously reported that outbreak and environmental, but not sporadic-case, strains of STEC O111 share a distinct aggregation phenotype (M. E. Diodati, A. H. Bates, M. B. Cooley, S. Walker, R. E. Mandrell, and M. T. Brandl, Foodborne Pathog Dis 12:235−243, 2015,http://dx.doi.org/10.1089/fpd.2014.1887). We show here the natural occurrence of nonaggregative variants in single STEC O111 strains. These variants do not produce curli fimbriae and lack RpoS function but synthesize cellulose. The deletion ofcsgBACorrpoSin an aggregative outbreak strain abolished aggregate formation, which was rescued when curli biogenesis or RpoS function, respectively, was restored. Complementation of a nonaggregative variant with RpoS also conferred curli production and aggregation. These observations were supported by Western blotting with an anti-CsgA antibody. Immunomicroscopy revealed that curli were undetectable on the cells of the nonaggregative variant and the RpoS mutant but were present in large quantities in the intercellular matrix of the assemblages formed by aggregative strains. Sequence analysis ofrpoSin the aggregative strain and its variant showed a single substitution of threonine for asparagine at amino acid 124. Our results indicate that the multicellular behavior of STEC O111 is RpoS dependent via positive regulation of curli production. Aggregation may confer a fitness advantage in O111 outbreak strains under stressful conditions in hydrodynamic environments along the food production chain and in the host, while the occurrence of nonaggregative variants may allow the cell population to adapt to conditions benefiting a planktonic lifestyle.


2012 ◽  
Vol 75 (2) ◽  
pp. 408-418 ◽  
Author(s):  
LOTHAR BEUTIN ◽  
ANNETT MARTIN

An outbreak that comprised 3,842 cases of human infections with enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 occurred in Germany in May 2011. The high proportion of adults affected in this outbreak and the unusually high number of patients that developed hemolytic uremic syndrome makes this outbreak the most dramatic since enterohemorrhagic E. coli (EHEC) strains were first identified as agents of human disease. The characteristics of the outbreak strain, the way it spread among humans, and the clinical signs resulting from EAHEC infections have changed the way Shiga toxin–producing E. coli strains are regarded as human pathogens in general. EAHEC O104:H4 is an emerging E. coli pathotype that is endemic in Central Africa and has spread to Europe and Asia. EAHEC strains have evolved from enteroaggregative E. coli by uptake of a Shiga toxin 2a (Stx2a)–encoding bacteriophage. Except for Stx2a, no other EHEC-specific virulence markers including the locus of enterocyte effacement are present in EAHEC strains. EAHEC O104:H4 colonizes humans through aggregative adherence fimbrial pili encoded by the enteroaggregative E. coli plasmid. The aggregative adherence fimbrial colonization mechanism substitutes for the locus of enterocyte effacement functions for bacterial adherence and delivery of Stx2a into the human intestine, resulting clinically in hemolytic uremic syndrome. Humans are the only known natural reservoir known for EAHEC. In contrast, Shiga toxin–producing E. coli and EHEC are associated with animals as natural hosts. Contaminated sprouted fenugreek seeds were suspected as the primary vehicle of transmission of the EAHEC O104:H4 outbreak strain in Germany. During the outbreak, secondary transmission (human to human and human to food) was important. Epidemiological investigations revealed fenugreek seeds as the source of entry of EAHEC O104:H4 into the food chain; however, microbiological analysis of seeds for this pathogen produced negative results. The survival of EAHEC in seeds and the frequency of human carriers of EAHEC should be investigated for a better understanding of EAHEC transmission routes.


2017 ◽  
Vol 61 (9) ◽  
Author(s):  
Andreas Bauwens ◽  
Lisa Kunsmann ◽  
Helge Karch ◽  
Alexander Mellmann ◽  
Martina Bielaszewska

ABSTRACT Ciprofloxacin, meropenem, fosfomycin, and polymyxin B strongly increase production of outer membrane vesicles (OMVs) in Escherichia coli O104:H4 and O157:H7. Ciprofloxacin also upregulates OMV-associated Shiga toxin 2a, the major virulence factor of these pathogens, whereas the other antibiotics increase OMV production without the toxin. These two effects might worsen the clinical outcome of infections caused by Shiga toxin-producing E. coli. Our data support the existing recommendations to avoid antibiotics for treatment of these infections.


2019 ◽  
Vol 8 (32) ◽  
Author(s):  
Yen-Te Liao ◽  
Yujie Zhang ◽  
Alexandra Salvador ◽  
Vivian C. H. Wu

Escherichia phage vB_EcoM-Sa45lw, a new member of the T4-like phages, was isolated from surface water in a produce-growing area. The phage, containing double-stranded DNA with a genome size of 167,353 bp and 282 predicted open reading frames (ORFs), is able to infect generic Escherichia coli and Shiga toxin-producing E. coli O45 and O157 strains.


2020 ◽  
Vol 86 (24) ◽  
Author(s):  
Erin M. Nawrocki ◽  
Hillary M. Mosso ◽  
Edward G. Dudley

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) strains, including E. coli O157:H7, cause severe illness in humans due to the production of Shiga toxin (Stx) and other virulence factors. Because Stx is coregulated with lambdoid prophage induction, its expression is especially susceptible to environmental cues. Infections with Stx-producing E. coli can be difficult to model due to the wide range of disease outcomes: some infections are relatively mild, while others have serious complications. Probiotic organisms, members of the gut microbiome, and organic acids can depress Stx production, in many cases by inhibiting the growth of EHEC strains. On the other hand, the factors currently known to amplify Stx act via their effect on the stx-converting phage. Here, we characterize two interactive mechanisms that increase Stx production by O157:H7 strains: first, direct interactions with phage-susceptible E. coli, and second, indirect amplification by secreted factors. Infection of susceptible strains by the stx-converting phage can expand the Stx-producing population in a human or animal host, and phage infection has been shown to modulate virulence in vitro and in vivo. Acellular factors, particularly colicins and microcins, can kill O157:H7 cells but may also trigger Stx expression in the process. Colicins, microcins, and other bacteriocins have diverse cellular targets, and many such molecules remain uncharacterized. The identification of additional Stx-amplifying microbial interactions will improve our understanding of E. coli O157:H7 infections and help elucidate the intricate regulation of pathogenicity in EHEC strains.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Laura Heinisch ◽  
Katharina Zoric ◽  
Maike Krause ◽  
Herbert Schmidt

ABSTRACT Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB1, stx2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB1 as well as stx2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.


2012 ◽  
Vol 78 (6) ◽  
pp. 1752-1764 ◽  
Author(s):  
Ryan C. Fink ◽  
Elaine P. Black ◽  
Zhe Hou ◽  
Masayuki Sugawara ◽  
Michael J. Sadowsky ◽  
...  

ABSTRACTAn increasing number of outbreaks of gastroenteritis recently caused byEscherichia coliO157:H7 have been linked to the consumption of leafy green vegetables. Although it is known thatE. colisurvives and grows in the phyllosphere of lettuce plants, the molecular mechanisms by which this bacterium associates with plants are largely unknown. The goal of this study was to identifyE. coligenes relevant to its interaction, survival, or attachment to lettuce leaf surfaces, comparingE. coliK-12, a model system, andE. coliO157:H7, a pathogen associated with a large number of outbreaks. Using microarrays, we found that upon interaction with intact leaves, 10.1% and 8.7% of the 3,798 shared genes were differentially expressed in K-12 and O157:H7, respectively, whereas 3.1% changed transcript levels in both. The largest group of genes downregulated consisted of those involved in energy metabolism, includingtnaA(33-fold change), encoding a tryptophanase that converts tryptophan into indole. Genes involved in biofilm modulation (bhsAandybiM) and curli production (csgAandcsgB) were significantly upregulated inE. coliK-12 and O157:H7. BothcsgAandbhsA(ycfR) mutants were impaired in the long-term colonization of the leaf surface, but onlycsgAmutants had diminished ability in short-term attachment experiments. Our data suggested that the interaction ofE. coliK-12 and O157:H7 with undamaged lettuce leaves likely is initiated via attachment to the leaf surface using curli fibers, a downward shift in their metabolism, and the suppression of biofilm formation.


2012 ◽  
Vol 81 (3) ◽  
pp. 838-849 ◽  
Author(s):  
Francis Dziva ◽  
Heidi Hauser ◽  
Thomas R. Connor ◽  
Pauline M. van Diemen ◽  
Graham Prescott ◽  
...  

ABSTRACTAvian pathogenicEscherichia coli(APEC) causes respiratory and systemic disease in poultry. Sequencing of a multilocus sequence type 95 (ST95) serogroup O1 strain previously indicated that APEC resemblesE. colicausing extraintestinal human diseases. We sequenced the genomes of two strains of another dominant APEC lineage (ST23 serogroup O78 strains χ7122 and IMT2125) and compared them to each other and to the reannotated APEC O1 sequence. For comparison, we also sequenced a human enterotoxigenicE. coli(ETEC) strain of the same ST23 serogroup O78 lineage. Phylogenetic analysis indicated that the APEC O78 strains were more closely related to human ST23 ETEC than to APEC O1, indicating that separation of pathotypes on the basis of their extraintestinal or diarrheagenic nature is not supported by their phylogeny. The accessory genome of APEC ST23 strains exhibited limited conservation of APEC O1 genomic islands and a distinct repertoire of virulence-associated loci. In light of this diversity, we surveyed the phenotype of 2,185 signature-tagged transposon mutants of χ7122 following intra-air sac inoculation of turkeys. This procedure identified novel APEC ST23 genes that play strain- and tissue-specific roles during infection. For example, genes mediating group 4 capsule synthesis were required for the virulence of χ7122 and were conserved in IMT2125 but absent from APEC O1. Our data reveal the genetic diversity ofE. colistrains adapted to cause the same avian disease and indicate that the core genome of the ST23 lineage serves as a chassis for the evolution ofE. colistrains adapted to cause avian or human disease via acquisition of distinct virulence genes.


2013 ◽  
Vol 79 (23) ◽  
pp. 7502-7509 ◽  
Author(s):  
Camilla Sekse ◽  
Marianne Sunde ◽  
Petter Hopp ◽  
Torkjel Bruheim ◽  
Kofitsyo Sewornu Cudjoe ◽  
...  

ABSTRACTThe investigation of an outbreak of hemorrhagic-uremic syndrome in Norway in 2006 indicated that the outbreak strainEscherichia coliO103:H25 could originate from sheep. A national survey of the Norwegian sheep population was performed, with the aim of identifying and describing a possible reservoir of potentially human-pathogenicE. coliO103, in particular of the H types 2 and 25. The investigation of fecal samples from 585 sheep flocks resulted in 1,222E. coliO103 isolates that were analyzed for the presence ofeaeandstxgenes, while a subset of 369 isolates was further examined for flagellar antigens (H typing),stxsubtypes,bfpA,astA, and molecular typing by pulsed-field gel electrophoresis (PFGE). The total ovineE. coliO103 serogroup was genetically diverse by numbers of H types, virulotypes, and PFGE banding patterns identified, although a tendency of clustering toward serotypes was seen. The flocks positive for potentially human-pathogenicE. coliO103 were geographically widely distributed, and no association could be found with county or geographical region. The survey showed thateae-negative,stx-negativeE. coliO103, probably nonpathogenic to humans, is very common in sheep, with 27.5% of flocks positive. Moreover, the study documented a low prevalence (0.7%) of potentially human-pathogenic Shiga toxin-producingE. coliO103:H2, while STEC O103:H25 was not detected. However, 3.1% and 5.8% of the flocks were positive for enteropathogenicE. coliO103 belonging to H types 2 and 25, respectively. These isolates are of concern as potential human pathogens by themselves but more importantly as possible precursors for human-pathogenic STEC.


Sign in / Sign up

Export Citation Format

Share Document