scholarly journals An Essential Membrane Protein Modulates the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia coli

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Elayne M. Fivenson ◽  
Thomas G. Bernhardt

ABSTRACT Gram-negative bacteria are surrounded by a complex cell envelope that includes two membranes. The outer membrane prevents many drugs from entering these cells and is thus a major determinant of their intrinsic antibiotic resistance. This barrier function is imparted by the asymmetric architecture of the membrane with lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The LPS and phospholipid synthesis pathways share an intermediate. Proper membrane biogenesis therefore requires that the flux through each pathway be balanced. In Escherichia coli, a major control point in establishing this balance is the committed step of LPS synthesis mediated by LpxC. Levels of this enzyme are controlled through its degradation by the inner membrane protease FtsH and its presumed adapter protein LapB (YciM). How turnover of LpxC is controlled has remained unclear for many years. Here, we demonstrate that the essential protein of unknown function YejM (PbgA) participates in this regulatory pathway. Suppressors of YejM essentiality were identified in lpxC and lapB, and LpxC overproduction was shown to be sufficient to allow survival of ΔyejM mutants. Furthermore, the stability of LpxC was shown to be reduced in cells lacking YejM, and genetic and physical interactions between LapB and YejM were detected. Taken together, our results are consistent with a model in which YejM directly modulates LpxC turnover by FtsH-LapB to regulate LPS synthesis and maintain membrane homeostasis. IMPORTANCE The outer membrane is a major determinant of the intrinsic antibiotic resistance of Gram-negative bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and the synthesis of these lipid species must be balanced for the membrane to maintain its barrier function in blocking drug entry. In this study, we identified an essential protein of unknown function as a key new factor in modulating LPS synthesis in the model bacterium Escherichia coli. Our results provide novel insight into how this organism and most likely other Gram-negative bacteria maintain membrane homeostasis and their intrinsic resistance to antibiotics.

2020 ◽  
Author(s):  
Elayne M. Fivenson ◽  
Thomas G. Bernhardt

ABSTRACTGram-negative bacteria are surrounded by a complex cell envelope that includes two membranes. The outer membrane prevents many drugs from entering these cells and is thus a major determinant of their intrinsic antibiotic resistance. This barrier function is imparted by the asymmetric architecture of the membrane with lipopolysaccharide (LPS) in the outer leaflet and phospholipids in the inner leaflet. The LPS and phospholipid synthesis pathways share a common intermediate. Proper membrane biogenesis therefore requires that the flux through each pathway be balanced. In Escherichia coli, a major control point in establishing this balance is the committed step of LPS synthesis mediated by LpxC. Levels of this enzyme are controlled through its degradation by the inner membrane protease FtsH and its presumed adaptor protein LapB(YciM). How turnover of LpxC is controlled has remained unclear for many years. Here, we demonstrate that the essential protein of unknown function YejM(PbgA), which we have renamed ClxD (control of LpxC degradation), participates in this regulatory pathway. Suppressors of ClxD essentiality were identified in lpxC and lapB, and LpxC overproduction was shown to be sufficient to allow survival of ΔclxD mutants. Furthermore, the half-life of LpxC was shown to be reduced in cells lacking ClxD, and genetic and physical interactions between LapB and ClxD were detected. Taken together, our results are consistent with a model in which ClxD directly modulates LpxC turnover by FtsH-LapB to regulate LPS synthesis and maintain membrane homeostasis.SIGNIFICANCEThe outer membrane is a major determinant of the intrinsic antibiotic resistance of Gram-negative bacteria. It is composed of both lipopolysaccharide (LPS) and phospholipid, and the synthesis of these lipid species must be balanced for the membrane to maintain its barrier function in blocking drug entry. In this report, we identify an essential protein of unknown function as a key new factor in maintaining LPS/phospholipid balance in the model bacterium Escherichia coli. Our results provide novel insight into how this organism and most likely other Gram-negative bacteria maintain membrane homeostasis and their intrinsic resistance to antibiotics.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Randi L. Guest ◽  
Daniel Samé Guerra ◽  
Maria Wissler ◽  
Jacqueline Grimm ◽  
Thomas J. Silhavy

ABSTRACT Lipopolysaccharide (LPS) is an essential glycolipid present in the outer membrane (OM) of many Gram-negative bacteria. Balanced biosynthesis of LPS is critical for cell viability; too little LPS weakens the OM, while too much LPS is lethal. In Escherichia coli, this balance is maintained by the YciM/FtsH protease complex, which adjusts LPS levels by degrading the LPS biosynthesis enzyme LpxC. Here, we provide evidence that activity of the YciM/FtsH protease complex is inhibited by the essential protein YejM. Using strains in which LpxC activity is reduced, we show that yciM is epistatic to yejM, demonstrating that YejM acts upstream of YciM to prevent toxic overproduction of LPS. Previous studies have shown that this toxicity can be suppressed by deleting lpp, which codes for a highly abundant OM lipoprotein. It was assumed that deletion of lpp restores lipid balance by increasing the number of acyl chains available for glycerophospholipid biosynthesis. We show that this is not the case. Rather, our data suggest that preventing attachment of lpp to the peptidoglycan sacculus allows excess LPS to be shed in vesicles. We propose that this loss of OM material allows continued transport of LPS to the OM, thus preventing lethal accumulation of LPS within the inner membrane. Overall, our data justify the commitment of three essential inner membrane proteins to avoid toxic over- or underproduction of LPS. IMPORTANCE Gram-negative bacteria are encapsulated by an outer membrane (OM) that is impermeable to large and hydrophobic molecules. As such, these bacteria are intrinsically resistant to several clinically relevant antibiotics. To better understand how the OM is established or maintained, we sought to clarify the function of the essential protein YejM in Escherichia coli. Here, we show that YejM inhibits activity of the YciM/FtsH protease complex, which regulates synthesis of the essential OM glycolipid lipopolysaccharide (LPS). Our data suggest that disrupting proper communication between LPS synthesis and transport to the OM leads to accumulation of LPS within the inner membrane (IM). The lethality associated with this event can be suppressed by increasing OM vesiculation. Our research has identified a completely novel signaling pathway that we propose coordinates LPS synthesis and transport.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Kerrie L. May ◽  
Kelly M. Lehman ◽  
Angela M. Mitchell ◽  
Marcin Grabowicz

ABSTRACTGram-negative bacteria produce lipid-anchored lipoproteins that are trafficked to their outer membrane (OM). These lipoproteins are essential components in each of the molecular machines that build the OM, including the Bam machine that assembles β-barrel proteins and the Lpt pathway that transports lipopolysaccharide. Stress responses are known to monitor Bam and Lpt function, yet no stress system has been found that oversees the fundamental process of lipoprotein trafficking. We used genetic and chemical biology approaches to induce several different lipoprotein trafficking stresses inEscherichia coli. Our results identified the Cpx two-component system as a stress response for monitoring trafficking. Cpx is activated by trafficking defects and is required to protect the cell against the consequence of the resulting stress. The OM-targeted lipoprotein NlpE acts as a sensor that allows Cpx to gauge trafficking efficiency. We reveal that NlpE signals to Cpx while it is transiting the inner membrane (IM)en routeto the OM and that only a small highly conserved N-terminal domain is required for signaling. We propose that defective trafficking causes NlpE to accumulate in the IM, activating Cpx to mount a transcriptional response that protects cells. Furthermore, we reconcile this new role of NlpE in signaling trafficking defects with its previously proposed role in sensing copper (Cu) stress by demonstrating that Cu impairs acylation of lipoproteins and, consequently, their trafficking to the OM.IMPORTANCEThe outer membrane built by Gram-negative bacteria such asEscherichia coliforms a barrier that prevents antibiotics from entering the cell, limiting clinical options at a time of prevalent antibiotic resistance. Stress responses ensure that barrier integrity is continuously maintained. We have identified the Cpx signal transduction system as a stress response that monitors the trafficking of lipid-anchored lipoproteins to the outer membrane. These lipoproteins are needed by every machine that builds the outer membrane. Cpx monitors just one lipoprotein, NlpE, to detect the efficiency of lipoprotein trafficking in the cell. NlpE and Cpx were previously shown to play a role in resistance to copper. We show that copper blocks lipoprotein trafficking, reconciling old and new observations. Copper is an important element in innate immunity against pathogens, and our findings suggest that NlpE and Cpx helpE. colisurvive the assault of copper on a key outer membrane assembly pathway.


2016 ◽  
Vol 198 (14) ◽  
pp. 1984-1992 ◽  
Author(s):  
Tara F. Mahoney ◽  
Dante P. Ricci ◽  
Thomas J. Silhavy

ABSTRACTThe biogenesis of the outer membrane (OM) ofEscherichia coliis a conserved and vital process. The assembly of integral β-barrel outer membrane proteins (OMPs), which represent a major component of the OM, depends on periplasmic chaperones and the heteropentameric β-barrel assembly machine (Bam complex) in the OM. However, not all OMPs are affected by null mutations in the same chaperones or nonessential Bam complex members, suggesting there are categories of substrates with divergent requirements for efficient assembly. We have previously demonstrated two classes of substrates, one comprising large, low-abundance, and difficult-to-assemble substrates that are heavily dependent on SurA and also Skp and FkpA, and the other comprising relatively simple and abundant substrates that are not as dependent on SurA but are strongly dependent on BamB for assembly. Here, we describe novel mutations inbamDthat lower levels of BamD 10-fold and >25-fold without altering the sequence of the mature protein. We utilized these mutations, as well as a previously characterized mutation that lowers wild-type BamA levels, to reveal a third class of substrates. These mutations preferentially cause a marked decrease in the levels of multimeric proteins. This susceptibility of multimers to lowered quantities of Bam machines in the cell may indicate that multiple Bam complexes are needed to efficiently assemble multimeric proteins into the OM.IMPORTANCEThe outer membrane (OM) of Gram-negative bacteria, such asEscherichia coli, serves as a selective permeability barrier that prevents the uptake of toxic molecules and antibiotics. Integral β-barrel proteins (OMPs) are assembled by the β-barrel assembly machine (Bam), components of which are conserved in mitochondria, chloroplasts, and all Gram-negative bacteria, including many clinically relevant pathogenic species. Bam is essential for OM biogenesis and accommodates a diverse array of client proteins; however, a mechanistic model that accounts for the selectivity and broad substrate range of Bam is lacking. Here, we show that the assembly of multimeric OMPs is more strongly affected than that of monomeric OMPs when essential Bam complex components are limiting, suggesting that multiple Bam complexes are needed to assemble multimeric proteins.


mSystems ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
John Osei Sekyere ◽  
Melese Abate Reta

ABSTRACT Antibiotic resistance (AR) remains a major threat to public and animal health globally. However, AR ramifications in developing countries are worsened by limited molecular diagnostics, expensive therapeutics, inadequate numbers of skilled clinicians and scientists, and unsanitary environments. The epidemiology of Gram-negative bacteria, their AR genes, and geographical distribution in Africa are described here. Data were extracted and analyzed from English-language articles published between 2015 and December 2019. The genomes and AR genes of the various species, obtained from the Pathosystems Resource Integration Center (PATRIC) and NCBI were analyzed phylogenetically using Randomized Axelerated Maximum Likelihood (RAxML) and annotated with Figtree. The geographic location of resistant clones/clades was mapped manually. Thirty species from 31 countries and 24 genera from 41 countries were analyzed from 146 articles and 3,028 genomes, respectively. Genes mediating resistance to β-lactams (including blaTEM-1, blaCTX-M, blaNDM, blaIMP, blaVIM, and blaOXA-48/181), fluoroquinolones (oqxAB, qnrA/B/D/S, gyrA/B, and parCE mutations, etc.), aminoglycosides (including armA and rmtC/F), sulfonamides (sul1/2/3), trimethoprim (dfrA), tetracycline [tet(A/B/C/D/G/O/M/39)], colistin (mcr-1), phenicols (catA/B, cmlA), and fosfomycin (fosA) were mostly found in Enterobacter spp. and Klebsiella pneumoniae, and also in Serratia marcescens, Escherichia coli, Salmonella enterica, Pseudomonas, Acinetobacter baumannii, etc., on mostly IncF-type, IncX3/4, ColRNAI, and IncR plasmids, within IntI1 gene cassettes, insertion sequences, and transposons. Clonal and multiclonal outbreaks and dissemination of resistance genes across species and countries and between humans, animals, plants, and the environment were observed; Escherichia coli ST103, K. pneumoniae ST101, S. enterica ST1/2, and Vibrio cholerae ST69/515 were common strains. Most pathogens were of human origin, and zoonotic transmissions were relatively limited. IMPORTANCE Antibiotic resistance (AR) is one of the major public health threats and challenges to effective containment and treatment of infectious bacterial diseases worldwide. Here, we used different methods to map out the geographical hot spots, sources, and evolutionary epidemiology of AR. Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., Neisseria meningitis/gonorrhoeae, Vibrio cholerae, Campylobacter jejuni, etc., were common pathogens shuttling AR genes in Africa. Transmission of the same clones/strains across countries and between animals, humans, plants, and the environment was observed. We recommend Enterobacter spp. or K. pneumoniae as better sentinel species for AR surveillance.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Christian Lorenz ◽  
Thomas J. Dougherty ◽  
Stephen Lory

ABSTRACTBiogenesis of the outer membrane of Gram-negative bacteria depends on dedicated macromolecular transport systems. The LolABCDE proteins make up the machinery for lipoprotein trafficking from the inner membrane (IM) across the periplasm to the outer membrane (OM). The Lol apparatus is additionally responsible for differentiating OM lipoproteins from those for the IM. InEnterobacteriaceae, a default sorting mechanism has been proposed whereby an aspartic acid at position +2 of the mature lipoproteins prevents Lol recognition and leads to their IM retention. In other bacteria, the conservation of sequences immediately following the acylated cysteine is variable. Here we show that inPseudomonas aeruginosa, the three essential Lol proteins (LolCDE) can be replaced with those fromEscherichia coli. TheP. aeruginosalipoproteins MexA, OprM, PscJ, and FlgH, with different sequences at their N termini, were correctly sorted by either theE. coliorP. aeruginosaLolCDE. We further demonstrate that an inhibitor ofE. coliLolCDE is active againstP. aeruginosaonly when expressing theE. coliorthologues. Our work shows that Lol proteins recognize a wide range of signals, consisting of an acylated cysteine and a specific conformation of the adjacent domain, determining IM retention or transport to the OM.IMPORTANCEGram-negative bacteria build their outer membranes (OM) from components that are initially located in the inner membrane (IM). A fraction of lipoproteins is transferred to the OM by the transport machinery consisting of LolABCDE proteins. Our work demonstrates that the LolCDE complexes of the transport pathways ofEscherichia coliandPseudomonas aeruginosaare interchangeable, with theE. coliorthologues correctly sorting theP. aeruginosalipoproteins while retaining their sensitivity to a small-molecule inhibitor. These findings question the nature of IM retention signals, identified inE. colias aspartate at position +2 of mature lipoproteins. We propose an alternative model for the sorting of IM and OM lipoproteins based on their relative affinities for the IM and the ability of the promiscuous sorting machinery to deliver lipoproteins to their functional sites in the OM.


mBio ◽  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Hannah M. Behrens ◽  
Edward D. Lowe ◽  
Joseph Gault ◽  
Nicholas G. Housden ◽  
Renata Kaminska ◽  
...  

ABSTRACT Pyocin S5 (PyoS5) is a potent protein bacteriocin that eradicates the human pathogen Pseudomonas aeruginosa in animal infection models, but its import mechanism is poorly understood. Here, using crystallography, biophysical and biochemical analyses, and live-cell imaging, we define the entry process of PyoS5 and reveal links to the transport mechanisms of other bacteriocins. In addition to its C-terminal pore-forming domain, elongated PyoS5 comprises two novel tandemly repeated kinked 3-helix bundle domains that structure-based alignments identify as key import domains in other pyocins. The central domain binds the lipid-bound common polysaccharide antigen, allowing the pyocin to accumulate on the cell surface. The N-terminal domain binds the ferric pyochelin transporter FptA while its associated disordered region binds the inner membrane protein TonB1, which together drive import of the bacteriocin across the outer membrane. Finally, we identify the minimal requirements for sensitizing Escherichia coli toward PyoS5, as well as other pyocins, and suggest that a generic pathway likely underpins the import of all TonB-dependent bacteriocins across the outer membrane of Gram-negative bacteria. IMPORTANCE Bacteriocins are toxic polypeptides made by bacteria to kill their competitors, making them interesting as potential antibiotics. Here, we reveal unsuspected commonalities in bacteriocin uptake pathways, through molecular and cellular dissection of the import pathway for the pore-forming bacteriocin pyocin S5 (PyoS5), which targets Pseudomonas aeruginosa. In addition to its C-terminal pore-forming domain, PyoS5 is composed of two tandemly repeated helical domains that we also identify in other pyocins. Functional analyses demonstrate that they have distinct roles in the import process. One recognizes conserved sugars projected from the surface, while the other recognizes a specific outer membrane siderophore transporter, FptA, in the case of PyoS5. Through engineering of Escherichia coli cells, we show that pyocins can be readily repurposed to kill other species. This suggests basic ground rules for the outer membrane translocation step that likely apply to many bacteriocins targeting Gram-negative bacteria.


mBio ◽  
2021 ◽  
Author(s):  
Natividad Ruiz ◽  
Rebecca M. Davis ◽  
Sujeet Kumar

Gram-negative bacteria like Escherichia coli are characterized by having two membranes. Systems required for the biogenesis of the Gram-negative outer membrane have been identified except for that required for the transport of newly synthesized phospholipids from the inner to the outer membrane.


mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Niccolò Morè ◽  
Alessandra M. Martorana ◽  
Jacob Biboy ◽  
Christian Otten ◽  
Matthias Winkle ◽  
...  

ABSTRACTGram-negative bacteria have a tripartite cell envelope with the cytoplasmic membrane (CM), a stress-bearing peptidoglycan (PG) layer, and the asymmetric outer membrane (OM) containing lipopolysaccharide (LPS) in the outer leaflet. Cells must tightly coordinate the growth of their complex envelope to maintain cellular integrity and OM permeability barrier function. The biogenesis of PG and LPS relies on specialized macromolecular complexes that span the entire envelope. In this work, we show thatEscherichia colicells are capable of avoiding lysis when the transport of LPS to the OM is compromised, by utilizing LD-transpeptidases (LDTs) to generate 3-3 cross-links in the PG. This PG remodeling program relies mainly on the activities of the stress response LDT, LdtD, together with the major PG synthase PBP1B, its cognate activator LpoB, and the carboxypeptidase PBP6a. Our data support a model according to which these proteins cooperate to strengthen the PG in response to defective OM synthesis.IMPORTANCEIn Gram-negative bacteria, the outer membrane protects the cell against many toxic molecules, and the peptidoglycan layer provides protection against osmotic challenges, allowing bacterial cells to survive in changing environments. Maintaining cell envelope integrity is therefore a question of life or death for a bacterial cell. Here we show thatEscherichia colicells activate the LD-transpeptidase LdtD to introduce 3-3 cross-links in the peptidoglycan layer when the integrity of the outer membrane is compromised, and this response is required to avoid cell lysis. This peptidoglycan remodeling program is a strategy to increase the overall robustness of the bacterial cell envelope in response to defects in the outer membrane.


mBio ◽  
2019 ◽  
Vol 10 (3) ◽  
Author(s):  
Jinshi Zhao ◽  
Jinsu An ◽  
Dohyeon Hwang ◽  
Qinglin Wu ◽  
Su Wang ◽  
...  

ABSTRACT Although distinct lipid phosphatases are thought to be required for processing lipid A (component of the outer leaflet of the outer membrane), glycerophospholipid (component of the inner membrane and the inner leaflet of the outer membrane), and undecaprenyl pyrophosphate (C55-PP; precursors of peptidoglycan and O antigens of lipopolysaccharide) in Gram-negative bacteria, we report that the lipid A 1-phosphatases, LpxEs, functionally connect multiple layers of cell envelope biogenesis in Gram-negative bacteria. We found that Aquifex aeolicus LpxE structurally resembles YodM in Bacillus subtilis, a phosphatase for phosphatidylglycerol phosphate (PGP) with a weak in vitro activity on C55-PP, and rescues Escherichia coli deficient in PGP and C55-PP phosphatase activities; deletion of lpxE in Francisella novicida reduces the MIC value of bacitracin, indicating a significant contribution of LpxE to the native bacterial C55-PP phosphatase activity. Suppression of plasmid-borne lpxE in F. novicida deficient in chromosomally encoded C55-PP phosphatase activities results in cell enlargement, loss of O-antigen repeats of lipopolysaccharide, and ultimately cell death. These discoveries implicate LpxE as the first example of a multifunctional regulatory enzyme that orchestrates lipid A modification, O-antigen production, and peptidoglycan biogenesis to remodel multiple layers of the Gram-negative bacterial envelope. IMPORTANCE Dephosphorylation of the lipid A 1-phosphate by LpxE in Gram-negative bacteria plays important roles in antibiotic resistance, bacterial virulence, and modulation of the host immune system. Our results demonstrate that in addition to removing the 1-phosphate from lipid A, LpxEs also dephosphorylate undecaprenyl pyrophosphate, an important metabolite for the synthesis of the essential envelope components, peptidoglycan and O-antigen. Therefore, LpxEs participate in multiple layers of biogenesis of the Gram-negative bacterial envelope and increase antibiotic resistance. This discovery marks an important step toward understanding the regulation and biogenesis of the Gram-negative bacterial envelope.


Sign in / Sign up

Export Citation Format

Share Document