scholarly journals Phosphorylation-Dependent Assembly of a 14-3-3 Mediated Signaling Complex during Red Blood Cell Invasion by Plasmodium falciparum Merozoites

mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Kunal R. More ◽  
Inderjeet Kaur ◽  
Quentin Giai Gianetto ◽  
Brandon M. Invergo ◽  
Thibault Chaze ◽  
...  

ABSTRACT Red blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics, we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/low K+), 143 of which were Ca2+ dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using coimmunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multiprotein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+-dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multiprotein complex. Disruption of the multiprotein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood-stage growth of malaria parasites. IMPORTANCE Invasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins, including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation-dependent multiprotein complex including signaling kinases assembles during the process of invasion. Disruption of this multiprotein complex impairs merozoite invasion of RBCs, providing a novel approach for the development of inhibitors to block the growth of blood-stage malaria parasites.

Author(s):  
Kunal R. More ◽  
Inderjeet Kaur ◽  
Quentin Giai Gianetto ◽  
Brandon M. Invergo ◽  
Thibault Chaze ◽  
...  

AbstractRed blood cell (RBC) invasion by Plasmodium merozoites requires multiple steps that are regulated by signaling pathways. Exposure of P. falciparum merozoites to the physiological signal of low K+, as found in blood plasma, leads to a rise in cytosolic Ca2+, which mediates microneme secretion, motility, and invasion. We have used global phosphoproteomic analysis of merozoites to identify signaling pathways that are activated during invasion. Using quantitative phosphoproteomics we found 394 protein phosphorylation site changes in merozoites subjected to different ionic environments (high K+/ low K+) out of which 143 were Ca2+-dependent. These included a number of signaling proteins such as catalytic and regulatory subunits of protein kinase A (PfPKAc and PfPKAr) and calcium-dependent protein kinase 1 (PfCDPK1). Proteins of the 14-3-3 family interact with phosphorylated target proteins to assemble signaling complexes. Here, using co-immunoprecipitation and gel filtration chromatography, we demonstrate that Pf14-3-3I binds phosphorylated PfPKAr and PfCDPK1 to mediate the assembly of a multi-protein complex in P. falciparum merozoites. A phospho-peptide, P1, based on the Ca2+ dependent phosphosites of PKAr, binds Pf14-3-3I and disrupts assembly of the Pf14-3-3I-mediated multi-protein complex. Disruption of the multi-protein complex with P1 inhibits microneme secretion and RBC invasion. This study thus identifies a novel signaling complex that plays a key role in merozoite invasion of RBCs. Disruption of this signaling complex could serve as a novel approach to inhibit blood stage growth of malaria parasites.ImportanceInvasion of red blood cells (RBCs) by Plasmodium falciparum merozoites is a complex process that is regulated by intricate signaling pathways. Here, we have used phosphoproteomic profiling to identify the key proteins involved in signaling events during invasion. We found changes in the phosphorylation of various merozoite proteins including multiple kinases previously implicated in the process of invasion. We also found that a phosphorylation dependent multi-protein complex including signaling kinases assembles during the process of invasion. Disruption of this multi-protein complex impairs merozoite invasion of RBCs providing a novel approach for the development of inhibitors to block the growth of blood stage malaria parasites.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Sabrina Absalon ◽  
Karin Blomqvist ◽  
Rachel M. Rudlaff ◽  
Travis J. DeLano ◽  
Michael P. Pollastri ◽  
...  

ABSTRACT The human malaria parasite Plasmodium falciparum requires efficient egress out of an infected red blood cell for pathogenesis. This egress event is highly coordinated and is mediated by several signaling proteins, including the plant-like P. falciparum calcium-dependent protein kinase 5 (PfCDPK5). Knockdown of PfCDPK5 results in an egress block where parasites are trapped inside their host cells. The mechanism of this PfCDPK5-dependent block, however, remains unknown. Here, we show that PfCDPK5 colocalizes with a specialized set of parasite organelles known as micronemes and is required for their discharge, implicating failure of this step as the cause of the egress defect in PfCDPK5-deficient parasites. Furthermore, we show that PfCDPK5 cooperates with the P. falciparum cGMP-dependent kinase (PfPKG) to fully activate the protease cascade critical for parasite egress. The PfCDPK5-dependent arrest can be overcome by hyperactivation of PfPKG or by physical disruption of the arrested parasite, and we show that both treatments facilitate the release of the micronemes required for egress. Our results define the molecular mechanism of PfCDPK5 function and elucidate the complex signaling pathway of parasite egress. IMPORTANCE The signs and symptoms of clinical malaria result from the replication of parasites in human blood. Efficient egress of the malaria parasite Plasmodium falciparum out of an infected red blood cell is critical for pathogenesis. The P. falciparum calcium-dependent protein kinase 5 (PfCDPK5) is essential for parasite egress. Following PfCDPK5 knockdown, parasites remain trapped inside their host cell and do not egress, but the mechanism for this block remains unknown. We show that PfCDPK5 colocalizes with parasite organelles known as micronemes. We demonstrate that PfCDPK5 is critical for the discharge of these micronemes and that failure of this step is the molecular mechanism of the parasite egress arrest. We also show that hyperactivation of the cGMP-dependent kinase PKG can overcome this arrest. Our data suggest that small molecules that inhibit the egress signaling pathway could be effective antimalarial therapeutics.


mBio ◽  
2021 ◽  
Author(s):  
Julie M. J. Verhoef ◽  
Markus Meissner ◽  
Taco W. A. Kooij

Apicomplexan parasites, such as Toxoplasma gondii and Plasmodium falciparum , are the cause of many important human and veterinarian diseases. While T. gondii tachyzoites replicate through endodyogeny, during which two daughter cells are formed within the parental cell, P. falciparum replicates through schizogony, where up to 32 parasites are formed in a single infected red blood cell and even thousands of daughter cells during mosquito- or liver-stage development.


2021 ◽  
Vol 83 ◽  
pp. 102358
Author(s):  
Shinya Miyazaki ◽  
Ben-Yeddy Abel Chitama ◽  
Wataru Kagaya ◽  
Amuza Byaruhanga Lucky ◽  
Xiaotong Zhu ◽  
...  

2008 ◽  
Vol 160 (2) ◽  
pp. 81-89 ◽  
Author(s):  
Laetitia Vincensini ◽  
Gamou Fall ◽  
Laurence Berry ◽  
Thierry Blisnick ◽  
Catherine Braun Breton

2012 ◽  
Vol 78 (21) ◽  
pp. 7638-7644 ◽  
Author(s):  
Amanda Tetlock ◽  
Christopher K. Yost ◽  
John Stavrinides ◽  
Richard G. Manzon

ABSTRACTVertebrate metamorphosis is often marked by dramatic morphological and physiological changes of the alimentary tract, along with major shifts in diet following development from larva to adult. Little is known about how these developmental changes impact the gut microbiome of the host organism. The metamorphosis of the sea lamprey (Petromyzon marinus) from a sedentary filter-feeding larva to a free-swimming sanguivorous parasite is characterized by major physiological and morphological changes to all organ systems. The transformation of the alimentary canal includes closure of the larval esophagus and the physical isolation of the pharynx from the remainder of the gut, which results in a nonfeeding period that can last up to 8 months. To determine how the gut microbiome is affected by metamorphosis, the microbial communities of feeding and nonfeeding larval and parasitic sea lamprey were surveyed using both culture-dependent and -independent methods. Our results show that the gut of the filter-feeding larva contains a greater diversity of bacteria than that of the blood-feeding parasite, with the parasite gut being dominated byAeromonasand, to a lesser extent,CitrobacterandShewanella. Phylogenetic analysis of the culturableAeromonasfrom both the larval and parasitic gut revealed that at least five distinct species were represented. Phenotypic characterization of these isolates revealed that over half were capable of sheep red blood cell hemolysis, but all were capable of trout red blood cell hemolysis. This suggests that the enrichment ofAeromonasthat accompanies metamorphosis is likely related to the sanguivorous lifestyle of the parasitic sea lamprey.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Maria del Pilar Quintana ◽  
Jun-Hong Ch’ng ◽  
Kirsten Moll ◽  
Arash Zandian ◽  
Peter Nilsson ◽  
...  

2018 ◽  
Vol 86 (4) ◽  
Author(s):  
Hiroaki Inaba ◽  
Atsuo Amano ◽  
Richard J. Lamont ◽  
Yukitaka Murakami ◽  
Michiyo Matsumoto-Nakano

ABSTRACT Porphyromonas gingivalis , a periodontal pathogen, has been implicated as a causative agent of preterm delivery of low-birth-weight infants. We previously reported that P. gingivalis activated cellular DNA damage signaling pathways and ERK1/2 that lead to G 1 arrest and apoptosis in extravillous trophoblast cells (HTR-8 cells) derived from the human placenta. In the present study, we further examined alternative signaling pathways mediating cellular damage caused by P. gingivalis. P. gingivalis infection of HTR-8 cells induced phosphorylation of p38 and Jun N-terminal protein kinase (JNK), while their inhibitors diminished both G 1 arrest and apoptosis. In addition, heat shock protein 27 (HSP27) was phosphorylated through both p38 and JNK, and knockdown of HSP27 with small interfering RNA (siRNA) prevented both G 1 arrest and apoptosis. Furthermore, regulation of G 1 arrest and apoptosis was associated with p21 expression. HTR-8 cells infected with P. gingivalis exhibited upregulation of p21, which was regulated by p53 and HSP27. These results suggest that P. gingivalis induces G 1 arrest and apoptosis via novel molecular pathways that involve p38 and JNK with its downstream effectors in human trophoblasts.


2015 ◽  
Vol 43 (4) ◽  
pp. 265-272 ◽  
Author(s):  
Wataru Kagaya ◽  
Shinya Miyazaki ◽  
Kazuhide Yahata ◽  
Nobuo Ohta ◽  
Osamu Kaneko

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Mary-Louise Wilde ◽  
Tony Triglia ◽  
Danushka Marapana ◽  
Jennifer K. Thompson ◽  
Alexei A. Kouzmitchev ◽  
...  

ABSTRACT Understanding the mechanisms behind host cell invasion by Plasmodium falciparum remains a major hurdle to developing antimalarial therapeutics that target the asexual cycle and the symptomatic stage of malaria. Host cell entry is enabled by a multitude of precisely timed and tightly regulated receptor-ligand interactions. Cyclic nucleotide signaling has been implicated in regulating parasite invasion, and an important downstream effector of the cAMP-signaling pathway is protein kinase A (PKA), a cAMP-dependent protein kinase. There is increasing evidence that P. falciparum PKA (PfPKA) is responsible for phosphorylation of the cytoplasmic domain of P. falciparum apical membrane antigen 1 (PfAMA1) at Ser610, a cAMP-dependent event that is crucial for successful parasite invasion. In the present study, CRISPR-Cas9 and conditional gene deletion (dimerizable cre) technologies were implemented to generate a P. falciparum parasite line in which expression of the catalytic subunit of PfPKA (PfPKAc) is under conditional control, demonstrating highly efficient dimerizable Cre recombinase (DiCre)-mediated gene excision and complete knockdown of protein expression. Parasites lacking PfPKAc show severely reduced growth after one intraerythrocytic growth cycle and are deficient in host cell invasion, as highlighted by live-imaging experiments. Furthermore, PfPKAc-deficient parasites are unable to phosphorylate PfAMA1 at Ser610. This work not only identifies an essential role for PfPKAc in the P. falciparum asexual life cycle but also confirms that PfPKAc is the kinase responsible for phosphorylating PfAMA1 Ser610. IMPORTANCE Malaria continues to present a major global health burden, particularly in low-resource countries. Plasmodium falciparum, the parasite responsible for the most severe form of malaria, causes disease through rapid and repeated rounds of invasion and replication within red blood cells. Invasion into red blood cells is essential for P. falciparum survival, and the molecular events mediating this process have gained much attention as potential therapeutic targets. With no effective vaccine available, and with the emergence of resistance to antimalarials, there is an urgent need for the development of new therapeutics. Our research has used genetic techniques to provide evidence of an essential protein kinase involved in P. falciparum invasion. Our work adds to the current understanding of parasite signaling processes required for invasion, highlighting PKA as a potential drug target to inhibit invasion for the treatment of malaria.


Sign in / Sign up

Export Citation Format

Share Document