scholarly journals Developmental Dynamics of Long Noncoding RNA Expression during Sexual Fruiting Body Formation in Fusarium graminearum

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Wonyong Kim ◽  
Cristina Miguel-Rojas ◽  
Jie Wang ◽  
Jeffrey P. Townsend ◽  
Frances Trail

ABSTRACT Long noncoding RNA (lncRNA) plays important roles in sexual development in eukaryotes. In filamentous fungi, however, little is known about the expression and roles of lncRNAs during fruiting body formation. By profiling developmental transcriptomes during the life cycle of the plant-pathogenic fungus Fusarium graminearum, we identified 547 lncRNAs whose expression was highly dynamic, with about 40% peaking at the meiotic stage. Many lncRNAs were found to be antisense to mRNAs, forming 300 sense-antisense pairs. Although small RNAs were produced from these overlapping loci, antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of small RNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally active small RNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the fruiting bodies matured. The nonsense-mediated decay (NMD) pathway is known to determine the fates of lncRNAs as well as mRNAs. Thus, we analyzed mutants defective in NMD and identified a subset of lncRNAs that were induced during sexual development but suppressed by NMD during vegetative growth. These results highlight the developmental stage-specific nature and functional potential of lncRNA expression in shaping the fungal fruiting bodies and provide fundamental resources for studying sexual stage-induced lncRNAs. IMPORTANCE Fusarium graminearum is the causal agent of the head blight on our major staple crops, wheat and corn. The fruiting body formation on the host plants is indispensable for the disease cycle and epidemics. Long noncoding RNA (lncRNA) molecules are emerging as key regulatory components for sexual development in animals and plants. To date, however, there is a paucity of information on the roles of lncRNAs in fungal fruiting body formation. Here we characterized hundreds of lncRNAs that exhibited developmental stage-specific expression patterns during fruiting body formation. Also, we discovered that many lncRNAs were induced in parallel with their overlapping transcripts on the opposite DNA strand during sexual development. Finally, we found a subset of lncRNAs that were regulated by an RNA surveillance system during vegetative growth. This research provides fundamental genomic resources that will spur further investigations on lncRNAs that may play important roles in shaping fungal fruiting bodies.

2017 ◽  
Vol 5 (40) ◽  
Author(s):  
Anke Treuner-Lange ◽  
Marc Bruckskotten ◽  
Oliver Rupp ◽  
Alexander Goesmann ◽  
Lotte Søgaard-Andersen

ABSTRACT Members of the Myxococcales order initiate a developmental program in response to starvation that culminates in formation of spore-filled fruiting bodies. To investigate the genetic basis for fruiting body formation, we present the complete 8.9-Mb genome sequence of Myxococcus macrosporus strain DSM 14697, generated using the PacBio sequencing platform.


2017 ◽  
Vol 5 (43) ◽  
Author(s):  
Anke Treuner-Lange ◽  
Marc Bruckskotten ◽  
Oliver Rupp ◽  
Alexander Goesmann ◽  
Lotte Søgaard-Andersen

ABSTRACT In response to starvation, members of the order Myxococcales form morphologically very different fruiting bodies. To determine whether fruiting myxobacteria share a common genetic program that leads to fruiting body formation, we sequenced and assembled the genome of Nannocystis exedens DSM 71 as two contigs with a total GC content of 72%.


2012 ◽  
Vol 11 (7) ◽  
pp. 885-895 ◽  
Author(s):  
Christian Seibel ◽  
Doris Tisch ◽  
Christian P. Kubicek ◽  
Monika Schmoll

ABSTRACT Light is one crucial environmental signal which can determine whether a fungus reproduces asexually or initiates sexual development. Mating in the ascomycete Hypocrea jecorina (anamorph Trichoderma reesei ) occurs preferentially in light. We therefore investigated the relevance of the light response machinery for sexual development in H. jecorina . We found that the photoreceptors BLR1 and BLR2 and the light-regulatory protein ENV1 have no effect on male fertility, while ENV1 is essential for female fertility. BLR1 and BLR2 were found to impact fruiting body formation although they are not essential for mating. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that BLR1, BLR2, and ENV1 negatively regulate transcript levels of both pheromone receptors as well as peptide pheromone precursors in light but not in darkness and in a mating type-dependent manner. The effect of BLR1 and BLR2 on regulation of pheromone precursor and receptor genes is less severe than that of ENV1 as strains lacking env1 show 100-fold (for ppg1 ) to more than 100,000-fold (for hpp1 ) increased transcript levels of pheromone precursor genes as well as more than 20-fold increased levels of hpr1 , the pheromone receptor receiving the HPP1 signal in a MAT1-1 strain. ENV1 likely integrates additional signals besides light, and our results indicate that its function is partially mediated via regulation of mat1-2-1 . We conclude that ENV1 is essential for balancing the levels of genes regulated in a mating-type-dependent manner, which contributes to determination of sexual identity and fruiting body formation.


2007 ◽  
Vol 189 (15) ◽  
pp. 5675-5682 ◽  
Author(s):  
James E. Berleman ◽  
John R. Kirby

ABSTRACT Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.


2006 ◽  
Vol 189 (2) ◽  
pp. 611-619 ◽  
Author(s):  
Oleksii Sliusarenko ◽  
David R. Zusman ◽  
George Oster

ABSTRACT When starved, Myxococcus xanthus cells assemble themselves into aggregates of about 105 cells that grow into complex structures called fruiting bodies, where they later sporulate. Here we present new observations on the velocities of the cells, their orientations, and reversal rates during the early stages of fruiting body formation. Most strikingly, we find that during aggregation, cell velocities slow dramatically and cells orient themselves in parallel inside the aggregates, while later cell orientations are circumferential to the periphery. The slowing of cell velocity, rather than changes in reversal frequency, can account for the accumulation of cells into aggregates. These observations are mimicked by a continuous agent-based computational model that reproduces the early stages of fruiting body formation. We also show, both experimentally and computationally, how changes in reversal frequency controlled by the Frz system mutants affect the shape of these early fruiting bodies.


2018 ◽  
Author(s):  
Wonyong Kim ◽  
Cristina Miguel-Rojas ◽  
Jie Wang ◽  
Jeffrey P Townsend ◽  
Frances Trail

ABSTRACTLong noncoding RNA (lncRNA) plays important roles in morphological differentiation and development in eukaryotes. In filamentous fungi, however, little is known about lncRNAs and their roles in sexual development. Here we describe sexual stage-induced lncRNAs during the formation of perithecia, the sexual fruiting bodies of Fusarium graminearum. We have identified 547 lncRNAs whose expression was developmental stage-specific, with about 40% of which peaked during the development of asci, the sac-like structures containing meiospores. A large fraction of the lncRNAs were found to be antisense to mRNAs, forming 300 sense–antisense pairs. Although small RNAs (sRNAs) were produced from these overlapping loci, most of the antisense lncRNAs appeared not to be involved in gene silencing pathways. Genome-wide analysis of sRNA clusters identified many silenced loci at the meiotic stage. However, we found transcriptionally-active sRNA clusters, many of which were associated with lncRNAs. Also, we observed that many antisense lncRNAs and their respective sense transcripts were induced in parallel as the perithecia matured. To identify regulatory components for lncRNA expression, we analyzed mutants defective in the nonsense-mediated decay (NMD) pathway. A subset of the lncRNAs appeared to be targeted by the NMD before the perithecia formation, suggesting a suppressive role of the NMD in lncRNA expression during vegetative stage. This research provides fundamental genomic resources that will spur further investigations on developmental lncRNAs that may play important roles in shaping the fungal fruiting bodies.


1998 ◽  
Vol 180 (5) ◽  
pp. 1241-1247 ◽  
Author(s):  
Barbara Silakowski ◽  
Heidi Ehret ◽  
Hans Ulrich Schairer

ABSTRACT Stigmatella aurantiaca is a gram-negative bacterium which forms, under conditions of starvation in a multicellular process, characteristic three-dimensional structures: the fruiting bodies. For studying this complex process, mutants impaired in fruiting body formation have been induced by transposon insertion with a Tn5-derived transposon. The gene affected (fbfB) in one of the mutants (AP182) was studied further. Inactivation of fbfB results in mutants which form only clumps during starvation instead of wild-type fruiting bodies. This mutant phenotype can be partially rescued, if cells of mutants impaired in fbfB function are mixed with those of some independent mutants defective in fruiting before starvation. The fbfBgene is expressed about 14 h after induction of fruiting body formation as determined by measuring β-galactosidase activity in a merodiploid strain harboring the wild-type gene and anfbfB-Δtrp-lacZ fusion gene or by Northern (RNA) analysis with the Rhodobacter capsulatus pufBA fragment fused tofbfB as an indicator. The predicted polypeptide FbfB has a molecular mass of 57.8 kDa and shows a significant homology to the galactose oxidase (GaoA) of the fungus Dactylium dendroides. Galactose oxidase catalyzes the oxidation of galactose and primary alcohols to the corresponding aldehydes.


Author(s):  
Shuai Zhou ◽  
Xiaoyu Zhang ◽  
Fuying Ma ◽  
Shangxian Xie ◽  
Chuanhong Tang ◽  
...  

To systemically understand the biosynthetic pathways of bioactive substances, including triterpenoids and polysaccharides, in Ganoderma lucidum, the correlation between substrate degradation, carbohydrate and triterpenoid metabolism during growth was analyzed by combining changes in metabolite content and changes in related enzyme expression in G. lucidum over 5 growth phases. Changes in low-polarity triterpenoid content were correlated with changes in glucose and mannitol content in fruiting bodies. Additionally, changes in medium-polarity triterpenoid content were correlated with changes in the lignocellulose content of the substrate and with the glucose, trehalose and mannitol contents of fruiting bodies. Weighted gene coexpression network analysis (WGCNA) indicated that changes in trehalose and polyol content were related to carbohydrate catabolism and polysaccharide synthesis. Changes in triterpenoid content were related to expression of the carbohydrate catabolic enzymes, laccase, cellulase, hemicellulase, and polysaccharide synthase and to the expression of several cytochrome P450 monooxygenases (CYPs). It was concluded that the products of cellulose and hemicellulose degradation participate in polyol, trehalose and polysaccharide synthesis during initial fruiting body formation. These carbohydrates accumulate in the early phase of fruiting body formation and are utilized when the fruiting bodies mature and a large number of spores are ejected. An increase in carbohydrate metabolism provides additional precursors for the synthesis of triterpenoids. Importance Most studies of G. lucidum have focused on its medicinal function and on the mechanism of its activity, whereas the physiological metabolism and synthesis of bioactive substances during the growth of this species have been less studied. Therefore, theoretical guidance for cultivation methods to increase the production of bioactive compounds remains lacking. This study integrated changes in the lignocellulose, carbohydrate and triterpenoid contents of G. lucidum with enzyme expression from transcriptomics data using WGCNA. The findings helped us better understand the connections between substrate utilization and the synthesis of polysaccharides and triterpenoids during the cultivation cycle of G. lucidum. The results of WGCNA suggest that the synthesis of triterpenoids can be enhanced not only through regulating the expression of enzymes in the triterpenoid pathway, but also through regulating carbohydrate metabolism and substrate degradation. This study provides a potential approach and identifies enzymes that can be targeted to regulate lignocellulose degradation and accelerate the accumulation of bioactive substances by regulating substrate degradation in G. lucidum.


Development ◽  
1978 ◽  
Vol 48 (1) ◽  
pp. 153-160
Author(s):  
M. Saito ◽  
K. Yanagisawa

Dictyostelium purpureum S5 and S6, mating type strains, form fruiting-bodies in a monoclonal culture, but produce macrocysts in a mix culture. The effects of Concanavalin A (Con A) on both fruiting-body formation and macrocyst formation, and changes of Con Amediated cell agglutinability during development were studied. It was found that Con A inhibits macrocyst formation but not fruiting-body formation, and that macrocyst-forming cells are much more susceptible to Con A agglutination than are fruiting-body-forming cells during the aggregation stages. When fruiting-body-forming cells are treated with either trypsin or α-chymotrypsin, their Con A agglutinability is enhanced to the same extent as that of macrocyst-forming cells. It was also found that when S6 cells are treated with proteases they sometimes produce normal macrocysts even in a monoclonal culture. The results obtained in these experiments showed that the surface properties of fruitingbody- forming cells and macrocyst-forming cells are different, and that the cell surface might play an important role in determining the two developmental courses.


2005 ◽  
Vol 4 (9) ◽  
pp. 1599-1602 ◽  
Author(s):  
Silvia Gabella ◽  
Simona Abbà ◽  
Sebastien Duplessis ◽  
Barbara Montanini ◽  
Francis Martin ◽  
...  

ABSTRACT cDNA arrays were used to explore mechanisms controlling fruiting body development in the truffle Tuber borchii. Differences in gene expression were higher between reproductive and vegetative stage than between two stages of fruiting body maturation. We suggest hypotheses about the importance of various physiological processes during the development of fruiting bodies.


Sign in / Sign up

Export Citation Format

Share Document