scholarly journals The NOX Family of Proteins Is Also Present in Bacteria

mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Christine Hajjar ◽  
Mickaël V. Cherrier ◽  
Gaëtan Dias Mirandela ◽  
Isabelle Petit-Hartlein ◽  
Marie José Stasia ◽  
...  

ABSTRACT Transmembrane NADPH oxidase (NOX) enzymes have been so far only characterized in eukaryotes. In most of these organisms, they reduce molecular oxygen to superoxide and, depending on the presence of additional domains, are called NOX or dual oxidases (DUOX). Reactive oxygen species (ROS), including superoxide, have been traditionally considered accidental toxic by-products of aerobic metabolism. However, during the last decade it has become evident that both O2 •− and H2O2 are key players in complex signaling networks and defense. A well-studied example is the production of O2 •− during the bactericidal respiratory burst of phagocytes; this production is catalyzed by NOX2. Here, we devised and applied a novel algorithm to search for additional NOX genes in genomic databases. This procedure allowed us to discover approximately 23% new sequences from bacteria (in relation to the number of NOX-related sequences identified by the authors) that we have added to the existing eukaryotic NOX family and have used to build an expanded phylogenetic tree. We cloned and overexpressed the identified nox gene from Streptococcus pneumoniae and confirmed that it codes for an NADPH oxidase. The membrane of the S. pneumoniae NOX protein (SpNOX) shares many properties with its eukaryotic counterparts, such as affinity for NADPH and flavin adenine dinucleotide, superoxide dismutase and diphenylene iodonium inhibition, cyanide resistance, oxygen consumption, and superoxide production. Traditionally, NOX enzymes in eukaryotes are related to functions linked to multicellularity. Thus, the discovery of a large family of NOX-related enzymes in the bacterial world brings up fascinating questions regarding their role in this new biological context. IMPORTANCE NADPH oxidase (NOX) enzymes have not yet been reported in bacteria. Here, we carried out computational and experimental studies to provide the first characterization of a prokaryotic NOX. Out of 996 prokaryotic proteins showing NOX signatures, we initially selected, cloned, and overexpressed four of them. Subsequently, and based on preliminary testing, we concentrated our efforts on Streptococcus SpNOX, which shares many biochemical characteristics with NOX2, the referent model of NOX enzymes. Our work makes possible, for the first time, the study of pure forms of this important family of enzymes, allowing for biophysical and molecular characterization in an unprecedented way. Similar advances regarding other membrane protein families have led to new structures, further mechanistic studies, and the improvement of inhibitors. In addition, biological functions of these newly described bacterial enzymes will be certainly discovered in the near future. IMPORTANCE NADPH oxidase (NOX) enzymes have not yet been reported in bacteria. Here, we carried out computational and experimental studies to provide the first characterization of a prokaryotic NOX. Out of 996 prokaryotic proteins showing NOX signatures, we initially selected, cloned, and overexpressed four of them. Subsequently, and based on preliminary testing, we concentrated our efforts on Streptococcus SpNOX, which shares many biochemical characteristics with NOX2, the referent model of NOX enzymes. Our work makes possible, for the first time, the study of pure forms of this important family of enzymes, allowing for biophysical and molecular characterization in an unprecedented way. Similar advances regarding other membrane protein families have led to new structures, further mechanistic studies, and the improvement of inhibitors. In addition, biological functions of these newly described bacterial enzymes will be certainly discovered in the near future.

2017 ◽  
Vol 71 (1) ◽  
pp. 57-68
Author(s):  
Dorota Bryk ◽  
Wioletta Olejarz ◽  
Danuta Zapolska-Downar

Reactive oxygen species (ROS) play a key role in the pathogenesis of atherosclerosis. The main mechanisms which are involved are low-density lipoprotein oxidative modification, inactivation of nitric oxide and modulation of redox-sensitive signaling pathways. ROS contribute to several aspects of atherosclerosis including endothelial cell dysfunction, monocyte/macrophage recruitment and activation, stimulation of inflammation, and inducing smooth muscle cell migration and proliferation. NADPH oxidase is the main source of ROS in the vasculature. This enzyme consists of a membrane-bound heterodimer of gp91phox and p22phox, cytosolic regulatory subunits p47phox, p67phox and p40phox, and small GTP-binding proteins rac1 and rac 2. Seven distinct isoforms of this enzyme have been identified, of which four (NOX1, 2, 4 and 5) may have cardiovascular function. In this paper, we review the current state of knowledge concerning the role of oxidative stress and NOX enzymes in pathogenesis of atherosclerosis. Moreover, we analyze the experimental studies that explore the relationship between the NOX family and atherosclerosis.


Author(s):  
Tuuli Tuisk

The aim of the article is to give an overview of previous studies concerning Livonian prosody. In separate subsections a characterization of earlier treatments of the Livonian quantity and tone system will be provided. The Livonian prosodic system became the object of international discussion for the first time in the 19th century. The special status of Livonian tones was first noticed by the Estonian linguist Ferdinand Johann Wiedemann and later by the Danish linguist Wilhelm Thomsen. The first experimental studies of Livonian pronunciation were initiated in the 1920’s, mainly due to interest in the broken tone. Previous descriptions appear to reveal a certain degree of agreement among researchers who have studied Livonian. Yet the traditional two-way quantity opposition view is being challenged by a ternary quantity distinction at the level of metric feet.Kokkuvõte. Tuuli Tuisk: Ülevaade liivi prosoodia uurimustest. Käesolevas artiklis antakse ülevaade uurimustest, mis käsitlevad liivi keele prosoodilist süsteemi. Liivi keele prosoodia äratas esmakordselt rahvusvahelist tähelepanu 19. sajandil. Eesti keeleteadlane Ferdinand Johann Wiedemann ja taani keeleteadlane Wilhelm Thomsen olid esimesed, kes märkasid liivi toonide iseärasusi. Huvist liivi katketooni vastu hakati 1920. aastatel tegema ka esimesi eksperimentaal-foneetilisi uurimusi. Ehkki varasemad uurimused peegeldavad teadlaste üsna üksmeelseid seisukohti, on liivi binaarse kvantiteedivastanduse kõrval aina enam arutelu tekitanud ternaarne kvantiteedivastandus.Märksõnad: liivi keel, prosoodia, fonoloogia, eksperimentaalfoneetika, kvantiteet, toon, stødKubbõvõttõks. Tuuli Tuisk: Iļļõvaņtļimi iļ līvõ prosodij tuņšlõkst. Se kēra um iļļõvaņtļimi iļ tuņšlõkst līvõ kīel prosōdij sistēmõst. Līvõ kīel prosōdij sai ežmõks tǟdõlpanmizt 19. āigastsadā āigal. Ēsti kēļnikā Ferdinand Johann Wiedemann ja dēņõ kēļnikā Wilhelm Thomsen vȯļtõ ežmizt, kis kāipizt ku līvõ kīelsõ at īžkizt tūoņõd. Ežmizt fonētilizt kōļimizt teitõ 1920. āigastis, sīepierāst ku interesīerizt iļ līvõ katkāndõks agā murdtõd tūoņ. Jedlõmizt tuņšlõkst nägţõbõd, ku tieudmīed vȯļțõ dižānist īdmēļizt, agā līvõ kōdvīți pitkit vastõmtõks kūorõks um emīņ nõvtõd iļ kuolmvīţiz pitkit vastõmtõks.


Tick-borne encephalitis virus (TBEV) was isolated for the first time in Sweden in 1958 (from ticks and from 1 tick-borne encephalitis [TBE] patient).1 In 2003, Haglund and colleagues reported the isolation and antigenic and genetic characterization of 14 TBEV strains from Swedish patients (samples collected 1991–1994).2 The first serum sample, from which TBEV was isolated, was obtained 2–10 days after onset of disease and found to be negative for anti-TBEV immunoglobulin M (IgM) by enzyme-linked immunosorbent assay (ELISA), whereas TBEV-specific IgM (and TBEV-specific immunoglobulin G/cerebrospinal fluid [IgG/CSF] activity) was demonstrated in later serum samples taken during the second phase of the disease.


2018 ◽  
pp. 47-52

Epimedium elatum (Morren & Decne) of family Berberidaceace is a rare perennial medicinal plant, endemic to high altitude forests of Northwestern Himalayas in India. Ethnobotanically, it has been used as an ingredient for treatment of bone-joint disorders, impotence and kidney disorders in Kashmir Himalayas. Phytochemically, it is rich in Epimedin ABC and Icariin; all of these have been demonstrated to possess remarkable biological activities like PDE-5 inhibition (treatment of erectile dysfunction), anticancer, antiosteoporosis antioxidant and antiviral properties. The present investigation reports its traditional usage, comprehensive distribution and conservation status from twenty ecogeographical regions in Kashmir Himalayas, India. The species was reported from Gurez valley for the first time. Numerous threats like excessive grazing, deforestration, habitat fragmentation, tourism encroachment, landslides and excessive exploitation have decreased its natural populations in most of the surveyed habitats. Consequently, its existence may become threatened in near future if timely conservation steps are not taken immediately by concerned stakeholders involved in medicinal plant research. Moreover, use of plant tissue culture techniques is recommended for development of its in vitro propagation protocols. Therefore, introduction of this medicinal plant in botanical gardens, protected sites and development of monitoring programmes are needed for its immediate conservation in Northwestern Himalayas, India.


2019 ◽  
Author(s):  
Caleb Karmel ◽  
Zhewei Chen ◽  
John Hartwig

We report a new system for the silylation of aryl C-H bonds. The combination of [Ir(cod)(OMe)]<sub>2</sub> and 2,9-Me<sub>2</sub>-phenanthroline (2,9-Me<sub>2</sub>phen) catalyzes the silylation of arenes at lower temperatures and with faster rates than those reported previously, when the hydrogen byproduct is removed, and with high functional group tolerance and regioselectivity. Inhibition of reactions by the H<sub>2</sub> byproduct is shown to limit the silylation of aryl C-H bonds in the presence of the most active catalysts, thereby masking their high activity. Analysis of initial rates uncovered the high reactivity of the catalyst containing the sterically hindered 2,9-Me<sub>2</sub>phen ligand but accompanying rapid inhibition by hydrogen. With this catalyst, under a flow of nitrogen to remove hydrogen, electron-rich arenes, including those containing sensitive functional groups, undergo silylation in high yield for the first time, and arenes that underwent silylation with prior catalysts react over much shorter times with lower catalyst loadings. The synthetic value of this methodology is demonstrated by the preparation of key intermediates in the synthesis of medicinally important compounds in concise sequences comprising silylation and functionalization. Mechanistic studies demonstrate that the cleavage of the aryl C-H bond is reversible and that the higher rates observed with the 2,9-Me<sub>2</sub>phen ligand is due to a more thermodynamically favorable oxidative addition of aryl C-H bonds.


2020 ◽  
Vol 17 ◽  
Author(s):  
Balogun Olaoye Solomon ◽  
Ajayi Olukayode Solomon ◽  
Owolabi Temitayo Abidemi ◽  
Oladimeji Abdulkarbir Oladele ◽  
Liu Zhiqiang

: Cissus aralioides is a medicinal plant used in sub-Saharan Africa for treatment of infectious diseases; however the chemical constituents of the plant have not been investigated. Thus, in this study, attempt was made at identifying predominant phytochemical constituents of the plant through chromatographic purification and silylation of the plant extract, and subsequent characterization using spectroscopic and GC-MS techniques. The minimum inhibitory concentration (MICs) for the antibacterial activities of the plant extract, chromatographic fractions and isolated compounds were also examined. Chromatographic purification of the ethyl acetate fraction from the whole plant afforded three compounds: β-sitosterol (1), stigmasterol (2) and friedelin (3). The phytosterols (1 and 2) were obtained together as a mixture. The GC-MS analysis of silylated extract indicated alcohols, fatty acids and sugars as predominant classes, with composition of 24.62, 36.90 and 26.52% respectively. Results of MICs indicated that friedelin and other chromatographic fractions had values (0.0626-1.0 mg/mL) comparable with the standard antibiotics used. Characterization of natural products from C. aralioides is being reported for the first time in this study.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


1994 ◽  
Vol 59 (1) ◽  
pp. 1-74 ◽  
Author(s):  
Pavel Kočovský

This review summarizes the main topics of our research and covers the period of the last 15 years. The prime interest is focused on various ways of controlling the regio- and stereoselectivity of selected organic reactions, in particular electrophilic additions, cleavage of cyclopropane rings, and allylic substitutions by means of neighboring groups and/or transition and non-transition metals. In the first part, the factors governing the course of electrophilic additions are assessed, culminating in the formulation of selection rules for the reactivity of cyclohexene systems, and in a concise synthesis of the natural cardioactive drug, strophanthidin. These studies also contribute to a better understanding of the mechanisms of electrophilic additions. The second part describes recent developments in the stereo- and regiocontrolled cleavage of cyclopropane rings by non-transition metals (Tl and Hg), and the reactivity and transmetalation (with Pd) of the primary products. This methodology has resulted in novel routes to unique polycyclic structures, and will have synthetic applications in the near future. Evidence for the stereospecific "corner" cleavage of the cyclopropane ring has been provided for the first time for Tl and later for Hg. The third part deals with transition metal-catalyzed allylic substitution. Evidence for a new "syn" mechanism for the formation of the intermediate (π-allyl)palladium complex has been provided, which runs counter to the generally accepted "anti" mechanism. A novel method for a Pd-catalyzed allylic oxidation has been developed and employed in the synthesis of natural sesquiterpenes. The increasing importance of transition and non-transition metals for synthetic organic chemistry is demonstrated by their unique reactivity in a number of the papers included in this review.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2911
Author(s):  
Margarida Gonçalves ◽  
Inês Silveirinha Vilarinho ◽  
Marinélia Capela ◽  
Ana Caetano ◽  
Rui Miguel Novais ◽  
...  

Ordinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator. For the first time, mortars in which the commercial sand was replaced by two exhausted sands from biomass boilers (CA and CT) were developed. Firstly, the characterization of the slag and sands (aggregates) was performed. After, the AAMs fresh and hardened state properties were evaluated, being the characterization complemented by FTIR and microstructural analysis. The binder and the mortars prepared with commercial sand presented high compressive strength values after 28 days of curing-56 MPa and 79 MPa, respectively. The mortars developed with exhausted sands exhibit outstanding compressive strength values, 86 and 70 MPa for CT and CA, respectively, and the other material’s properties were not affected. Consequently, this work proved that high compressive strength waste-based one-part AAMs mortars can be produced and that it is feasible to use another waste as aggregate in the mortar’s formulations: the exhausted sands from biomass boilers.


Sign in / Sign up

Export Citation Format

Share Document