scholarly journals Beyond Self-Resistance: ABCF ATPase LmrC Is a Signal-Transducing Component of an Antibiotic-Driven Signaling Cascade Accelerating the Onset of Lincomycin Biosynthesis

mBio ◽  
2021 ◽  
Author(s):  
Marketa Koberska ◽  
Ludmila Vesela ◽  
Vladimir Vimberg ◽  
Jakub Lenart ◽  
Jana Vesela ◽  
...  

Resistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotics or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics.

Author(s):  
Marketa Koberska ◽  
Ludmila Vesela ◽  
Vladimir Vimberg ◽  
Jakub Lenart ◽  
Jana Vesela ◽  
...  

AbstractIn natural environments, antibiotics are an important instrument of inter-species competition. At subinhibitory concentrations, they act as cues or signals inducing antibiotic production: however, our knowledge of well-documented antibiotic-based sensing systems is limited. Here, for the soil actinobacterium Streptomyces lincolnensis we describe a fundamentally new ribosome-mediated signaling cascade that accelerates the onset of lincomycin production in response to an external ribosome-targeting antibiotic to synchronize the antibiotic production within the population. The entire cascade is encoded within the lincomycin biosynthetic gene cluster (BGC) and besides the transcriptional regulator, LmbU it consists of three lincomycin resistance proteins: a lincomycin transporter, LmrA, a 23S rRNA methyltransferase, LmrB, both conferring a high resistance, and an ABCF ATPase LmrC that confers only moderate resistance but is indispensable for the antibiotic-induced signal transduction. Specifically, the antibiotic sensing occurs via a ribosome-mediated attenuation, which activates LmrC production in response to lincosamide, streptogramin A, or pleuromutilin antibiotics. Then, the ribosome-operating LmrC ATPase activity triggers the transcription of lmbU and consequently the expression of lincomycin BGC. Finally, the production of LmrC is downregulated by LmrA and LmrB which reduces the amount of the ribosome-bound antibiotic and thus fine-tune the cascade. We propose that analogous ABCF-mediated signaling systems are relatively common because many BGCs for ribosome-targeting antibiotics encode an ABCF-protein accompanied by additional resistance protein(s) and transcriptional regulators. Moreover, we revealed that three of eight co-produced ABCF proteins of S. lincolnensis are clindamycin-responsive thus the ABCF-mediated antibiotic signaling might be generally utilized tool of chemical communication.IMPORTANCEResistance proteins are perceived as mechanisms protecting bacteria from the inhibitory effect of their produced antibiotic or antibiotics from competitors. Here, we report that antibiotic resistance proteins regulate lincomycin biosynthesis in response to subinhibitory concentrations of antibiotics. Particularly, we show the dual character of ABCF ATPase LmrC which confers antibiotic resistance and simultaneously transduces a signal from ribosome-bound antibiotic to gene expression, where the 5’ untranslated sequence upstream of its encoding gene functions as a primary antibiotic sensor. The ABCF-mediated antibiotic signaling can in principle function not only in the induction of antibiotic biosynthesis but in general in selective gene expression in response to any small molecules targeting the 50S ribosomal subunit, including clinically important antibiotics, to mediate intercellular antibiotic signaling and stress response induction. Moreover, the resistance-regulatory function of LmrC presented here for the first time unifies yet functionally inconsistent ABCF family involving the antibiotic resistance proteins and the translational regulators.


2021 ◽  
Author(s):  
Gelio Alves ◽  
Aleksey Y Ogurtsov ◽  
Roger Karlsson ◽  
Daniel Jaen-Luchoro ◽  
Beatriz Pineiro-Iglesias ◽  
...  

Fast and accurate identifications of pathogenic bacteria along with their associated antibiotic resistance proteins are of paramount importance for patient treatments and public health. While mass spectrometry has become an important, technique for diagnostics of infectious disease, there is a need for mass spectrometry workflows offering this capability. To meet this need, we have augmented the previously published Microorganism Classification and Identification (MiCId) workflow for this capability. To evaluate the performance of the newly augmented MiCId workflow, we have used MS/MS datafiles from samples of 10 antibiotic resistance bacterial strains belonging to three different species: Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The evaluation results show that MiCId's workflow has a sensitivity value around 85% (with a lower bound at about 72%) and a precision greater than 95% in the identification of antibiotic resistance proteins. Using MS/MS datasets from samples of two bacterial clonal isolates, one being antibiotic-sensitive while the other (obtained from the same patient at different times) being multidrug-resistant, we applied MiCId's workflow to investigate possible mechanisms of antibiotic resistance in these pathogenic bacteria; the results showed that MiCId's conclusions are in agreement with the published study. Furthermore, we show that MiCId's workflow is fast. It provides microorganismal identifications, protein identifications, sample biomass estimates, and antibiotic resistance protein identifications in 6-17 minutes per MS/MS sample using computing resources that are available in most desktop and laptop computers, making it a highly portable workflow. This study demonstrated that MiCId's workflow is fast, portable, and with high sensitivity and high precision, making it a valuable tool for rapid identifications of bacteria as well as detection of their antibiotic resistance proteins. The new version of MiCId (v.07.01.2021) is freely available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html.


2020 ◽  
Vol 20 (4) ◽  
Author(s):  
Jumpol Sopanaporn ◽  
Sirinporn Suksawatamnuay ◽  
Amanulia Sardikin ◽  
Rittirat Lengwittaya ◽  
Warinthorn Chavasiri ◽  
...  

ABSTRACT Pinostrobin, a flavonoid compound known for its diverse pharmacological actions, including anti-leukemic and anti-inflammatory activities, has been repeatedly isolated by various screenings, but its action mechanism is still obscure. Previously, pinostrobin was rediscovered in our laboratory using a yeast-based assay procedure devised specifically for the inhibitory effect on the activated Ca2+ signaling that leads the cells to severe growth retardation in the G2 phase. Here, we attempted to identify target of pinostrobin employing the genetic techniques available in the yeast. Using various genetically engineered yeast strains in which the Ca2+-signaling cascade can be activated by the controlled expression of the various signaling molecules of the cascade, its target was narrowed down to Swe1, the cell-cycle regulatory protein kinase. The Swe1 kinase is situated at the downstream of the Ca2+-signaling cascade and downregulates the Cdc28/Clb complex by phosphorylating the Cdc28 moiety of the complex in the G2 phase. We further demonstrated that pinostrobin inhibits the protein kinase activity of Swe1 in vivo as estimated by the decreased level of Cdc28 phosphorylation at Tyr-19. Since the yeast SWE1 gene is an ortholog for the human WEE1 gene, our finding implied a potentiality of pinostrobin as the G2 checkpoint abrogator in cancer chemotherapy.


2020 ◽  
Author(s):  
Bassam Elgamoudi ◽  
Taha taha ◽  
Victoria Korolik

<p>The ability of bacterial pathogens to form biofilm is an important virulence mechanism in relation to its pathogenesis and transmission. Biofilms play a crucial role in survival in unfavourable environmental conditions, act as reservoirs of microbial contamination and antibiotic resistance. For intestinal pathogen Campylobacter jejuni, biofilms are considered to be a contributing factor in transmission through the food chain and currently, there are no known methods for intervention. Here we present an unconventional approach to reducing biofilm formation by C. jejuni by the application of D-amino acids (DAs), and L-amino acids (LAs). We found that DAs not LAs, except L-alanine, reduced biofilm formation by up to 70%. The treatment of C. jejuni cells with DAs changed the biofilm architecture and reduced the appearance of amyloid-like fibrils.  In addition, a mixture of DAs enhanced antimicrobial efficacy of D-Cycloserine (DCS) up to 32% as compared with DCS treatment alone. Unexpectedly, D-alanine was able to reverse the inhibitory effect of other DAs as well as DCS. Furthermore, L-alanine and D-tryptophan decreased transcript levels of alanine racemase (alr) and D-alanine-D-alanine ligase (ddlA). Our findings suggest that a combination of DAs could reduce biofilm formation, viability and persistence of C. jejuni.</p>


2012 ◽  
Vol 78 (6) ◽  
pp. 1708-1714 ◽  
Author(s):  
Kelly M. McGarvey ◽  
Konstantin Queitsch ◽  
Stanley Fields

ABSTRACTMost genes for antibiotic resistance present in soil microbes remain unexplored because most environmental microbes cannot be cultured. Only recently has the identification of these genes become feasible through the use of culture-independent methods. We screened a soil metagenomic DNA library in anEscherichia colihost for genes that can confer resistance to kanamycin, gentamicin, rifampin, trimethoprim, chloramphenicol, or tetracycline. The screen revealed 41 genes that encode novel protein variants of eight protein families, including aminoglycoside acetyltransferases, rifampin ADP-ribosyltransferases, dihydrofolate reductases, and transporters. Several proteins of the same protein family deviate considerably from each other yet confer comparable resistance. For example, five dihydrofolate reductases sharing at most 44% amino acid sequence identity in pairwise comparisons were equivalent in conferring trimethoprim resistance. We identified variants of aminoglycoside acetyltransferases and transporters that differ in the specificity of the drugs for which they confer resistance. We also found wide variation in protein structure. Two forms of rifampin ADP-ribosyltransferases, one twice the size of the other, were similarly effective at conferring rifampin resistance, although the short form was expressed at a much lower level. Functional metagenomic screening provides insight into the large variability in antibiotic resistance protein sequences, revealing divergent variants that preserve protein function.


2004 ◽  
Vol 53 (11) ◽  
pp. 1129-1136 ◽  
Author(s):  
Patrizia Spigaglia ◽  
Paola Mastrantonio

Recent studies have shown that Clostridium difficile strains with variant toxins and those with resistance to macrolide–lincosamide–streptogramin B (MLSB) are increasingly causing severe disease and outbreaks in hospital settings. Here, the pathogenicity locus (PaLoc), the acquisition of binary toxin, and the genotypic and phenotypic characteristics of antibiotic resistance of 74 C. difficile clinical strains isolated from symptomatic patients in Italy during different time periods were studied. These strains were found to belong to two different lineages, and those isolated before 1991 were genetically unrelated to the more recent strains. The majority of recent C. difficile strains showed variations in toxin genes and in the toxin negative regulator (tcdC) and had the binary toxin. In 62 % of them, variations in tcdC and the presence of the binary toxin were associated. Five classes of susceptibility/resistance pattern (EC-a to -e) for erythromycin and clindamycin were identified in all strains studied. Most of the recent isolates belonged to EC-d and EC-e and, although erythromycin-resistant in vitro, did not harbour the commonly associated ermB determinant. Interestingly, two strains of the EC-d class were resistant to clindamycin only after induction with subinhibitory concentrations of the antibiotic. A decrease in tetracycline and chloramphenicol MIC values was also observed in the recently isolated strains, associated with less frequent detection of the catD and tetM genes. Two tetM-positive strains were resistant in vitro only after induction with subinhibitory concentrations of the antibiotic. The acquisition of the binary toxin, the possible increase in toxin production due to a mutated negative regulator and a decrease in the fitness cost as a result of lower levels of antibiotic resistance or other mechanisms may have led to the successful establishment of these new phenotypes, with potentially serious clinical implications.


2021 ◽  
Author(s):  
Deeksha Pandey ◽  
Bandana Kumari ◽  
Neelja Singhal ◽  
Manish Kumar

Abstract This protocol describes a method for detection of bacterial proteins involved in efflux mediated antibiotic resistance (ARE) and their sub-families as described in the research paper entitled "BacEffluxPred: A two-tier system to predict and categorize bacterial efflux mediated antibiotic resistance proteins” published in Scientific Reports. BacEffluxPred is a support vector machine based two-tier prediction method, that can be used for the detection of efflux proteins responsible for antibiotic resistance in bacteria and to identify the families to which it belongs. The overall prediction cycle includes three important steps: 1) The query protein is presented to the prediction algorithm. 2) If the query protein would be predicted to be a non-ARE protein, the prediction would stop at tier-I.3) If the query protein would be predicted as an ARE protein at the tier-I, the query protein would be forwarded to tier-II for ARE family prediction. By using these steps it is possible to generate the models that can be used on proteomic data to predict whether the given data have potential ARE proteins or not if yes it will further classified into their following families. This is the first in-silico tool for predicting bacterial ARE proteins and their families and it is freely available as both web-server and standalone versions at http://proteininformatics.org/mkumar/baceffluxpred/


Sign in / Sign up

Export Citation Format

Share Document