scholarly journals High-Throughput Mutagenesis and Cross-Complementation Experiments Reveal Substrate Preference and Critical Residues of the Capsule Transporters in Streptococcus pneumoniae

mBio ◽  
2021 ◽  
Author(s):  
Wan-Zhen Chua ◽  
Matthias Maiwald ◽  
Kean Lee Chew ◽  
Raymond Tzer-Pin Lin ◽  
Sanduo Zheng ◽  
...  

All licensed pneumococcal vaccines target the capsular polysaccharide (CPS). This layer is highly variable and is important for virulence in many bacterial pathogens.

2020 ◽  
Vol 97 (1) ◽  
pp. 72-82
Author(s):  
A. E. Zaitsev ◽  
E. A. Kurbatova ◽  
N. B. Egorova ◽  
E. V. Sukhova ◽  
N. E. Nifantiev

The introduction of pneumococcal vaccines into national immunization programmes around the world has reduced the incidence of pneumococcal vaccine serotypes, but had no influence on the incidence of Streptococcus pneumoniae serotype 3 included in their composition. The results of evaluation of epidemiological efficacy and immunogenicity of capsular polysaccharide of S. pneumoniae serotype 3 capsular polysaccharide (CP) in conjugated and polysaccharide pneumococcal vaccines are contradictory. Some studies have shown the effectiveness of vaccination, other studies indicate insufficient immunogenicity and prophylactic efficacy of S. pneumoniae serotype 3 CP. The authors’ analysis of the results of clinical studies showed that the prophylactic efficacy of S. pneumoniae serotype 3 CP depends on the type of vaccine, nosological form of the disease, age, immunization schedule. According to the literature data, the most informative parameter of the protective activity of S. pneumoniae CP in pneumococcal vaccines, including serotype 3, is opsonophagocytosis. The experimental data of the low immunogenicity of serotype 3 CP, presumably associated with an unusual way of synthesis of its CP, are considered. To increase the im muno genicity of S. pneumoniae serotype 3 CP, the use of synthetic oligosaccharides of a strictly defined chemical structure corresponding to the protective fragments of serotype 3 CP and conjugated with a carrier protein for induction of T-dependent immune response and immunological memory is promising.


Author(s):  
A. E. Zaitsev ◽  
E. A. Kurbatova ◽  
N. B. Egorova ◽  
E. V. Sukhova ◽  
N. E. Nifantiev

The introduction of pneumococcal vaccines into national immunization programmes around the world has reduced the incidence of pneumococcal vaccine serotypes, but had no influence on the incidence of Streptococcus pneumoniae serotype 3 included in their composition. The results of evaluation of epidemiological efficacy and immunogenicity of capsular polysaccharide of S. pneumoniae serotype 3 capsular polysaccharide (CP) in conjugated and polysaccharide pneumococcal vaccines are contradictory. Some studies have shown the effectiveness of vaccination, other studies indicate insufficient immunogenicity and prophylactic efficacy of S. pneumoniae serotype 3 CP. The authors’ analysis of the results of clinical studies showed that the prophylactic efficacy of S. pneumoniae serotype 3 CP depends on the type of vaccine, nosological form of the disease, age, immunization schedule. According to the literature data, the most informative parameter of the protective activity of S. pneumoniae CP in pneumococcal vaccines, including serotype 3, is opsonophagocytosis. The experimental data of the low immunogenicity of serotype 3 CP, presumably associated with an unusual way of synthesis of its CP, are considered. To increase the im muno genicity of S. pneumoniae serotype 3 CP, the use of synthetic oligosaccharides of a strictly defined chemical structure corresponding to the protective fragments of serotype 3 CP and conjugated with a carrier protein for induction of T-dependent immune response and immunological memory is promising.


2021 ◽  
Vol 8 (12) ◽  
Author(s):  
Larry S McDaniel ◽  
Edwin Swiatlo

Abstract The sudden emergence and global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have greatly accelerated the adoption of novel vaccine strategies, which otherwise would have likely languished for years. In this light, vaccines for certain other pathogens could certainly benefit from reconsideration. One such pathogen is Streptococcus pneumoniae (pneumococcus), an encapsulated bacterium that can express >100 antigenically distinct serotypes. Current pneumococcal vaccines are based exclusively on capsular polysaccharide—either purified alone or conjugated to protein. Since the introduction of conjugate vaccines, the valence of pneumococcal vaccines has steadily increased, as has the associated complexity and cost of production. There are many pneumococcal proteins invariantly expressed across all serotypes, which have been shown to induce robust immune responses in animal models. These proteins could be readily produced using recombinant DNA technology or by mRNA technology currently used in SARS-CoV-2 vaccines. A door may be opening to new opportunities in affordable and broadly protective vaccines.


mBio ◽  
2011 ◽  
Vol 2 (5) ◽  
Author(s):  
Masahide Yano ◽  
Shruti Gohil ◽  
J. Robert Coleman ◽  
Catherine Manix ◽  
Liise-anne Pirofski

ABSTRACTThe use of pneumococcal capsular polysaccharide (PPS)-based vaccines has resulted in a substantial reduction in invasive pneumococcal disease. However, much remains to be learned about vaccine-mediated immunity, as seven-valent PPS-protein conjugate vaccine use in children has been associated with nonvaccine serotype replacement and 23-valent vaccine use in adults has not prevented pneumococcal pneumonia. In this report, we demonstrate that certain PPS-specific monoclonal antibodies (MAbs) enhance the transformation frequency of two differentStreptococcus pneumoniaeserotypes. This phenomenon was mediated by PPS-specific MAbs that agglutinate but do not promote opsonic effector cell killing of the homologous serotypeinvitro. Compared to the autoinducer, competence-stimulating peptide (CSP) alone, transcriptional profiling of pneumococcal gene expression after incubation with CSP and one such MAb to the PPS of serotype 3 revealed changes in the expression of competence (com)-related and bacteriocin-like peptide (blp) genes involved in pneumococcal quorum sensing. This MAb was also found to induce a nearly 2-fold increase in CSP2-mediated bacterial killing or fratricide. These observations reveal a novel, direct effect of PPS-binding MAbs on pneumococcal biology that has important implications for antibody immunity to pneumococcus in the pneumococcal vaccine era. Taken together, our data suggest heretofore unsuspected mechanisms by which PPS-specific antibodies could affect genetic exchange and bacterial viability in the absence of host cells.IMPORTANCECurrent thought holds that pneumococcal capsular polysaccharide (PPS)-binding antibodies protect against pneumococcus by inducing effector cell opsonic killing of the homologous serotype. While such antibodies are an important part of how pneumococcal vaccines protect against pneumococcal disease, PPS-specific antibodies that do not exhibit this activity but are highly protective against pneumococcus in mice have been identified. This article examines the effect of nonopsonic PPS-specific monoclonal antibodies (MAbs) on the biology ofStreptococcus pneumoniae. The results showed that in the presence of a competence-stimulating peptide (CSP), such MAbs increase the frequency of pneumococcal transformation. Further studies with one such MAb showed that it altered the expression of genes involved in quorum sensing and increased competence-induced killing or fratricide. These findings reveal a novel, previously unsuspected mechanism by which certain PPS-specific antibodies exert a direct effect on pneumococcal biology that has broad implications for bacterial clearance, genetic exchange, and antibody immunity to pneumococcus.


2015 ◽  
Vol 59 (4) ◽  
pp. 2458-2461 ◽  
Author(s):  
Helio S. Sader ◽  
Robert K. Flamm ◽  
Jennifer M. Streit ◽  
David J. Farrell ◽  
Ronald N. Jones

ABSTRACTA total of 84,704 isolates were collected from 191 medical centers in 2009 to 2013 and tested for susceptibility to ceftaroline and comparator agents by broth microdilution methods. Ceftaroline inhibited allStaphylococcus aureusisolates at ≤2 μg/ml and was very active against methicillin-resistant strains (MIC at which 90% of the isolates tested are inhibited [MIC90], 1 μg/ml; 97.6% susceptible). AmongStreptococcus pneumoniaeisolates, the highest ceftaroline MIC was 0.5 μg/ml, and ceftaroline activity against the most commonEnterobacteriaceaespecies (MIC50, 0.12 μg/ml; 78.9% susceptible) was similar to that of ceftriaxone (MIC50, ≤0.25 μg/ml; 86.8% susceptible).


Sign in / Sign up

Export Citation Format

Share Document