scholarly journals Analogous Metabolic Decoupling in Pseudomonas putida and Comamonas testosteroni Implies Energetic Bypass to Facilitate Gluconeogenic Growth

mBio ◽  
2021 ◽  
Author(s):  
Rebecca A. Wilkes ◽  
Jacob Waldbauer ◽  
Ludmilla Aristilde

Glycolytic metabolism of sugars is extensively studied in the Proteobacteria , but gluconeogenic carbon sources (e.g., organic acids, amino acids, aromatics) that feed into the tricarboxylic acid (TCA) cycle are widely reported to produce a fast-growth phenotype, particularly in species with biotechnological relevance. Much remains unknown about the importance of glycolysis-associated pathways in the metabolism of gluconeogenic carbon substrates.

Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 248
Author(s):  
Chang Ha Park ◽  
Hyeon Ji Yeo ◽  
Ye Jin Kim ◽  
Bao Van Nguyen ◽  
Ye Eun Park ◽  
...  

This study aimed to elucidate the variations in primary and secondary metabolites during Lycorisradiata flower development using high performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS). The result showed that seven carotenoids, seven phenolic acids, three anthocyanins, and galantamine were identified in the L. radiata flowers. Most secondary metabolite levels gradually decreased according to the flower developmental stages. A total of 51 metabolites, including amines, sugars, sugar intermediates, sugar alcohols, amino acids, organic acids, phenolic acids, and tricarboxylic acid (TCA) cycle intermediates, were identified and quantified using GC-TOFMS. Among the hydrophilic compounds, most amino acids increased during flower development; in contrast, TCA cycle intermediates and sugars decreased. In particular, glutamine, asparagine, glutamic acid, and aspartic acid, which represent the main inter- and intracellular nitrogen carriers, were positively correlated with the other amino acids and were negatively correlated with the TCA cycle intermediates. Furthermore, quantitation data of the 51 hydrophilic compounds were subjected to partial least-squares discriminant analyses (PLS-DA) to assess significant differences in the metabolites of L. radiata flowers from stages 1 to 4. Therefore, this study will serve as the foundation for a biochemical approach to understand both primary and secondary metabolism in L. radiata flower development.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Arief Izzairy Zamani ◽  
Susann Barig ◽  
Sarah Ibrahim ◽  
Hirzun Mohd. Yusof ◽  
Julia Ibrahim ◽  
...  

Abstract Background Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. Results Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC–MS/MS-TripleQ and GC–MS, while untargeted metabolite profiling was performed using LC–MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. Conclusions Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.


2006 ◽  
Vol 74 (2) ◽  
pp. 1130-1140 ◽  
Author(s):  
Merlin Tchawa Yimga ◽  
Mary P. Leatham ◽  
James H. Allen ◽  
David C. Laux ◽  
Tyrrell Conway ◽  
...  

ABSTRACT In Salmonella enterica serovar Typhimurium, the Cra protein (catabolite repressor/activator) regulates utilization of gluconeogenic carbon sources by activating transcription of genes in the gluconeogenic pathway, the glyoxylate bypass, the tricarboxylic acid (TCA) cycle, and electron transport and repressing genes encoding glycolytic enzymes. A serovar Typhimurium SR-11 Δcra mutant was recently reported to be avirulent in BALB/c mice via the peroral route, suggesting that gluconeogenesis may be required for virulence. In the present study, specific SR-11 genes in the gluconeogenic pathway were deleted (fbp, glpX, ppsA, and pckA), and the mutants were tested for virulence in BALB/c mice. The data show that SR-11 does not require gluconeogenesis to retain full virulence and suggest that as yet unidentified sugars are utilized by SR-11 for growth during infection of BALB/c mice. The data also suggest that the TCA cycle operates as a full cycle, i.e., a sucCD mutant, which prevents the conversion of succinyl coenzyme A to succinate, and an ΔsdhCDA mutant, which blocks the conversion of succinate to fumarate, were both attenuated, whereas both an SR-11 ΔaspA mutant and an SR-11 ΔfrdABC mutant, deficient in the ability to run the reductive branch of the TCA cycle, were fully virulent. Moreover, although it appears that SR-11 replenishes TCA cycle intermediates from substrates present in mouse tissues, fatty acid degradation and the glyoxylate bypass are not required, since an SR-11 ΔfadD mutant and an SR-11 ΔaceA mutant were both fully virulent.


1971 ◽  
Vol 17 (8) ◽  
pp. 1073-1079 ◽  
Author(s):  
Lee A. Bulla Jr ◽  
Grant St. Julian ◽  
Robert A. Rhodes

Oxidation of pyruvate, acetate, succinate, and glutamate was compared in Bacillus thuringiensis, B. alvei, B. lentimorbus, and B. popilliae. Cells of B. thuringiensis and B. alvei in transition from vegetative growth to sporulation oxidized these substrates by tricarboxylic acid (TCA) cycle reactions. No TCA cycle activity was exhibited by B. lentimorbus and B. popilliae cells that do not sporulate. B. popilliae decarboxylated C-1 of pyruvate and glutamate; B. lentimorbus, C-1 of pyruvate only. B. thuringiensis and B. alvei oxidized pyruvate and acetate at a much higher rate in the absence of amino acids and related compounds than when these nutrients were exogenously supplied; in contrast, there was no appreciable increase in C-1 decarboxylation of pyruvate by B. lentimorbus and B. popilliae. No nutrient effect was observed on succinate and glutamate oxidation in any of these four organisms.


2007 ◽  
Vol 189 (21) ◽  
pp. 7556-7562 ◽  
Author(s):  
Aditya Basu ◽  
Rahul Shrivastava ◽  
Bhakti Basu ◽  
Shree K. Apte ◽  
Prashant S. Phale

ABSTRACT Pseudomonas putida CSV86 utilizes aromatic compounds in preference to glucose and coutilizes aromatics and organic acids. Protein analysis of cells grown on different carbon sources, either alone or in combination, revealed that a 43-kDa periplasmic-space protein was induced by glucose and repressed by aromatics and succinate. Two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry analysis identified this protein as closely resembling the sugar ABC transporter of Pseudomonas putida KT2440. A partially purified 43-kDa protein showed glucose binding activity and was specific for glucose. The results demonstrate that the aromatic- and organic acid-mediated repression of a periplasmic-space glucose binding protein and consequent inhibition of glucose transport are responsible for this strain's ability to utilize aromatics and organic acids in preference to glucose.


2019 ◽  
Author(s):  
Yuan Song ◽  
Jiaojun Zhu

Abstract Background: Korean pine seeds have primary dormancy following dispersal, leading to poor seed germination and seedling establishment. Metabolic homeostasis determines whether the seeds are dormant or non-dormant. However, the specific metabolic pathways that maintain the primary dormancy of pine seeds are poorly understood. Results: Metabolic analysis was employed on the embryos of PDRS (seeds released from primary dormancy) and PDS (primary dormant seeds) on days 0, 5 and 11 after incubation under a germination-inductive temperature. A larger metabolic switch occurred in PDRS embryos from days 0 to 11. The contents of ninety metabolites were significantly changed from days 0 to 5, 83% of which (including most sugars, organic acids and amino acids) increased, reflecting that biosynthetic metabolism processes are initiated. The contents of ninety-two metabolites showed distinct variations from days 5 to 11, 71% of which (including most organic acids and almost all amino acids) reduced substantially. Fructose 6-phosphate, inositol-3-phosphate, 3-phosphoglyceric and D-glucose-6-phosphate contents showed the most decrease with decreasing 409-, 75-, 58- and 41-fold, indicating that the glycolysis and tricarboxylic acid (TCA) cycle strongly slowed down. The contents of the most metabolites in PDS embryos also displayed a relatively larger alteration only from days 0 to 5. Although 64% of metabolites increased from days 0 to 5, their levels were still lower compared with PDRS embryos. Furthermore, most metabolites were not further accumulated from days 5 to 11. Unlike PDRS embryos, almost all amino acids in PDS embryos did not exhibit a substantial decrease from days 5 to 11. Also, there was not a major decrease in the levels of metabolites involved mainly in glycolysis and TCA cycle, while some intermediates even increased. Conclusions: The attenuated biosynthetic metabolism processes, the lower utilization rate of amino acids and the higher operation rate of glycolysis and TCA in embryos maintain primary dormancy.


Author(s):  
Asfaw Tora Kacho B.S.R. Pattnaik

Corynebacterium glutamicumis a nonpathogenic, aerobic, gram-positive soil bacterium used for the large-scale biotechnological production of several biomolecules. C. glutamicum is an industrial microbe traditionally used for the production of amino acids. It is a well known microbe as the workhorse in fermentation industry used since its first discovery in Japan in 1950s for production of monosodium glutamate (MSG)and L-lysine with a market size of 3.1 and 2.2 million. However, for the fermentative production of diverse products through genetic–metabolic engineering. Due to its industrial importance, several clones of C. glutamicum have been sequenced by both industry and academic groups. Furthermore it has also been exploited for the synthesis of a variety of other fuels and chemicals. Especially, the facultative anaerobic lifestyle of this Gram-positive bacterium formed the basis to engineer C. glutamicum for the production of reduced molecules such as organic acids (e.g., lactate, succinate) and alcohols (e.g., ethanol, isobutanol) under zero-growth anaerobic conditions. The present work is a review of various uses of C. glutamicum for which the researchers explored several resources including the PubMed database, Journals and online archives upto March 2019. The review in its analysis signifies the vital utility of C. glutamicum in various prospective. Most articles were on occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Through genetic alterations, this microbe showed its efficacy for the simultaneous utilization of hexose and pentose sugars of biomass hydrolysate for making value-added products, such as amino acids and polyamines, and thus making it a strain of choice to work in a bio-refinery concept. This soil microbe also showed its efficacy in bioremediation purposes, such as arsenic removal. Recently its extensive research has focused on engineering beyond the scope of amino acids for utilization of alternative carbon sources, (e.g. coming from wastes and unprocessed sources), and construction of C. glutamicum strains for production of new products such as diamines, organic acids and alcohols. Meanwhile, a variety of corynebacterial strains allows access to alternative carbon sources that allows production of a wide range of industrially relevant compounds. Some of these efforts set new standards in terms of titers and productivities achieved whereas others represent a proof-of-principle. These achievements manifest the position of C. glutamicum as an important industrial microorganism with capabilities far beyond the traditional amino acid production. According to the studies cited in different literatures C. glutamicum reported as the most effective and playing important roles as dominant bacteria in biotechnological applications as well as industrial processes and products. And, with recent advances in biotechnology, the economic contributions that these organisms can make in biotechnological applications and industrial processes can be exploited further for large scale benefit of mankind.


2021 ◽  
Author(s):  
Khushboo Borah ◽  
Tom A. Mendum ◽  
Nathaniel D. Hawkins ◽  
Jane L. Ward ◽  
Michael H. Beale ◽  
...  

AbstractThe utilisation of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection thereby identifying the Mtb specific metabolic pathways and enzymes required for carbon co-metabolism as potential drug targets. Metabolic flux represents the final integrative outcome of many different levels of cellular regulation that contribute to the flow of metabolites through the metabolic network. It is therefore critical that we have an in-depth understanding of the rewiring of metabolic fluxes in different conditions. Here, we employed 13C-metabolic flux analysis using stable isotope tracers (13C and 2H) and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly on physiologically relevant carbon sources in a steady state chemostat. We demonstrate that Mtb is able to efficiently co-metabolise combinations of either cholesterol or glycerol along with C2 generating carbon substrates. The uniform assimilation of the carbon sources by Mtb throughout the network indicated no compartmentalization of metabolism in these conditions however there were substrate specific differences in metabolic fluxes. This work identified that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle as the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide new insights into the metabolic architecture that affords adaptability of Mtb to divergent carbon substrates.ImportanceEach year more than 1 million people die of tuberculosis (TB). Many more are infected but successfully diagnosed and treated with antibiotics, however antibiotic-resistant TB isolates are becoming ever more prevalent and so novel therapies are urgently needed that can effectively kill the causative agent. Mtb specific metabolic pathways have been identified as an important drug target in TB. However the apparent metabolic plasticity of this pathogen presents a major obstacle to efficient targeting of Mtb specific vulnerabilities and therefore it is critical to define the metabolic fluxes that Mtb utilises in different conditions. Here, we used 13C-metabolic flux analysis to measure the metabolic fluxes that Mtb uses whilst growing on potential in vivo nutrients. Our analysis identified selective use of the metabolic network that included the TCA cycle, glyoxylate shunt and methyl citrate cycle. The metabolic flux phenotypes determined in this study improves our understanding about the co-metabolism of multiple carbon substrates by Mtb identifying a reversible methyl citrate cycle and the glyoxylate shunt as the critical metabolic nodes which underlie the nutritional flexibility of Mtb.


2019 ◽  
Author(s):  
Yuan Song ◽  
Jiaojun Zhu

Abstract Background: Korean pine seeds have primary dormancy following dispersal, leading to poor seed germination and seedling establishment. Metabolic homeostasis determines whether the seeds are dormant or non-dormant. However, the specific metabolic pathways that maintain the primary dormancy of pine seeds are poorly understood. Results: Metabolic analysis was employed on the embryos of PDRS (seeds released from primary dormancy) and PDS (primary dormant seeds) on days 0, 5 and 11 after incubation under a germination-inductive temperature. A larger metabolic switch occurred in PDRS embryos from days 0 to 11. The contents of ninety metabolites were significantly changed from days 0 to 5, 83% of which (including most sugars, organic acids and amino acids) increased, reflecting that biosynthetic metabolism processes are initiated. The contents of ninety-two metabolites showed distinct variations from days 5 to 11, 71% of which (including most organic acids and almost all amino acids) reduced substantially. Fructose 6-phosphate, inositol-3-phosphate, 3-phosphoglyceric and D-glucose-6-phosphate contents showed the most decrease with decreasing 409-, 75-, 58- and 41-fold, indicating that the glycolysis and tricarboxylic acid (TCA) cycle strongly slowed down. The contents of the most metabolites in PDS embryos also displayed a relatively larger alteration only from days 0 to 5. Although 64% of metabolites increased from days 0 to 5, their levels were still lower compared with PDRS embryos. Furthermore, most metabolites were not further accumulated from days 5 to 11. Unlike PDRS embryos, almost all amino acids in PDS embryos did not exhibit a substantial decrease from days 5 to 11. Also, there was not a major decrease in the levels of metabolites involved mainly in glycolysis and TCA cycle, while some intermediates even increased. Conclusions: The attenuated biosynthetic metabolism processes, the lower utilization rate of amino acids and the higher operation rate of glycolysis and TCA in embryos maintain primary dormancy.


2019 ◽  
Author(s):  
Yuan Song ◽  
Jiaojun Zhu

Abstract Background Korean pine seeds have primary dormancy following dispersal, leading to poor seed germination and seedling establishment. Metabolic homeostasis determines whether the seeds are dormant or non-dormant. However, the specific metabolic pathways that maintain the primary dormancy of pine seeds are poorly understood. Results Metabolic analysis was employed on the embryos of PDRS (primary dormancy released seeds) and PDS (primary dormant seeds) on days 0, 5 and 11 after incubation under a germination-inductive temperature. A larger metabolic switch occurred in PDRS embryos from days 0 to 11. Sixty-six metabolites were significantly changed from days 0 to 5, 83% of which (including most sugars, organic acids and amino acids) increased, which appear to reflect biosynthetic metabolism processes are initiated. Seventy-six metabolites showed distinct variations from days 5 to 11, 74% of which (including most organic acids and almost all amino acids) reduced substantially. Most pronounced one was a major 409-, 75-, 58- and 41-fold reduce in the respective levels of fructose 6-phosphate, inositol-3-phosphate, 3-phosphoglyceric and D-glucose-6-phosphate, which appear to reflect the glycolysis and tricarboxylic acid (TCA) cycle are strongly slowed down. The majority of the metabolites in PDS embryos displayed a relatively larger alteration only during from days 0 to 5. Although 69% of metabolites increased from days 0 to 5, their levels were still lower compared with PDRS embryos. Furthermore, most metabolites were not further accumulated from days 5 to 11. Unlike PDRS embryos, almost all amino acids in PDS embryos did not exhibit a substantial decrease from days 5 to 11. Also, there was not a major decrease in the levels of metabolites involved mainly in glycolysis and TCA cycle, while some intermediates even increased. Conclusions The attenuated biosynthetic metabolism processes, the lower utilization rate of amino acids and the higher operation rate of glycolysis and TCA in embryos maintain primary dormancy.


Sign in / Sign up

Export Citation Format

Share Document