scholarly journals Cyclin A Promotes S-Phase Entry via Interaction with the Replication Licensing Factor Mcm7

2010 ◽  
Vol 31 (2) ◽  
pp. 248-255 ◽  
Author(s):  
T. Chibazakura ◽  
K. Kamachi ◽  
M. Ohara ◽  
S. Tane ◽  
H. Yoshikawa ◽  
...  
2019 ◽  
Author(s):  
Debjani Pal ◽  
Adrian E. Torres ◽  
Abbey L. Messina ◽  
Andrew Dickson ◽  
Kuntal De ◽  
...  

ABSTRACTThe interplay of the Anaphase-Promoting Complex/Cyclosome (APC/C) and Skp1-Cul1-F-box (SCF) E3 ubiquitin ligases is necessary for controlling cell cycle transitions and checkpoint responses, which are critical for maintaining genomic stability. Yet, the mechanisms underlying the coordinated activity of these enzymes are not completely understood. Recently, Cyclin A- and Plk1- mediated phosphorylation of Cdh1 was demonstrated to trigger its ubiquitination by SCFβTRCP at the G1/S transition. However, Cyclin A-Cdk and Plk1 activities peak in G2 so it is unclear why Cdh1 is targeted at G1/S but not in G2. Here, we show that phosphorylation of Cdh1 by Chk1 contributes to its recognition by SCFβTRCP, promotes efficient S-phase entry, and is important for cellular proliferation. Conversely, Chk1 activity in G2 inhibits Cdh1 accumulation. Overall, these data suggest a model whereby the rise and fall of Chk1 activity is a key factor in the feedback loop between APC/CCdh1 and the replication machinery that enhances the G1/S and S/G2 transitions, respectively.


2000 ◽  
Vol 20 (7) ◽  
pp. 2529-2542 ◽  
Author(s):  
W. Clark ◽  
E. J. Black ◽  
A. MacLaren ◽  
U. Kruse ◽  
N. LaThangue ◽  
...  

ABSTRACT v-Jun accelerates G1 progression and shares the capacity of the Myc, E2F, and E1A oncoproteins to sustain S-phase entry in the absence of mitogens; however, how it does so is unknown. To gain insight into the mechanism, we investigated how v-Jun affects mitogen-dependent processes which control the G1/S transition. We show that v-Jun enables cells to express cyclin A and cyclin A-cdk2 kinase activity in the absence of growth factors and that deregulation of cdk2 is required for S-phase entry. Cyclin A expression is repressed in quiescent cells by E2F acting in conjunction with its pocket protein partners Rb, p107, and p130; however, v-Jun overrides this control, causing phosphorylated Rb and proliferation-specific E2F-p107 complexes to persist after mitogen withdrawal. Dephosphorylation of Rb and destruction of cyclin A nevertheless occur normally at mitosis, indicating that v-Jun enables cells to rephosphorylate Rb and reaccumulate cyclin A without exogenous mitogenic stimulation each time the mitotic “clock” is reset. D-cyclin–cdk activity is required for Rb phosphorylation in v-Jun-transformed cells, since ectopic expression of the cdk4- and cdk6-specific inhibitor p16 INK4A inhibits both DNA synthesis and cell proliferation. Despite this, v-Jun does not stimulate D-cyclin–cdk activity but does induce a marked deregulation of cyclin E-cdk2. In particular, hormonal activation of a conditional v-Jun–estrogen receptor fusion protein in quiescent, growth factor-deprived cells stimulates cyclin E-cdk2 activity and triggers Rb phosphorylation and DNA synthesis. Thus, v-Jun overrides the mitogen dependence of S-phase entry by deregulating Rb phosphorylation, E2F-pocket protein interactions, and ultimately cyclin A-cdk2 activity. This is the first report, however, that cyclin E-cdk2, rather than D-cyclin–cdk, is likely to be the critical Rb kinase target of v-Jun.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 550
Author(s):  
Indra A. Shaltiel ◽  
Alba Llopis ◽  
Melinda Aprelia ◽  
Rob Klompmaker ◽  
Apostolos Menegakis ◽  
...  

Most Cyclin-dependent kinases (Cdks) are redundant for normal cell division. Here we tested whether these redundancies are maintained during cell cycle recovery after a DNA damage-induced arrest in G1. Using non-transformed RPE-1 cells, we find that while Cdk4 and Cdk6 act redundantly during normal S-phase entry, they both become essential for S-phase entry after DNA damage in G1. We show that this is due to a greater overall dependency for Cdk4/6 activity, rather than to independent functions of either kinase. In addition, we show that inactivation of pocket proteins is sufficient to overcome the inhibitory effects of complete Cdk4/6 inhibition in otherwise unperturbed cells, but that this cannot revert the effects of Cdk4/6 inhibition in DNA damaged cultures. Indeed, we could confirm that, in addition to inactivation of pocket proteins, Cdh1-dependent anaphase-promoting complex/cyclosome (APC/CCdh1) activity needs to be inhibited to promote S-phase entry in damaged cultures. Collectively, our data indicate that DNA damage in G1 creates a unique situation where high levels of Cdk4/6 activity are required to inactivate pocket proteins and APC/CCdh1 to promote the transition from G1 to S phase.


2011 ◽  
Vol 414 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Burcu Erbaykent-Tepedelen ◽  
Besra Özmen ◽  
Lokman Varisli ◽  
Ceren Gonen-Korkmaz ◽  
Bilge Debelec-Butuner ◽  
...  

2008 ◽  
Vol 28 (8) ◽  
pp. 2803-2814 ◽  
Author(s):  
Miriam Marqués ◽  
Amit Kumar ◽  
Isabel Cortés ◽  
Ana Gonzalez-García ◽  
Carmen Hernández ◽  
...  

ABSTRACT Phosphoinositide 3-kinase (PI3K) is an early signaling molecule that regulates cell growth and cell cycle entry. PI3K is activated immediately after growth factor receptor stimulation (at the G0/G1 transition) and again in late G1. The two ubiquitous PI3K isoforms (p110α and p110β) are essential during embryonic development and are thought to control cell division. Nonetheless, it is presently unknown at which point each is activated during the cell cycle and whether or not they both control S-phase entry. We found that p110α was activated first in G0/G1, followed by a minor p110β activity peak. In late G1, p110α activation preceded that of p110β, which showed the maximum activity at this time. p110β activation required Ras activity, whereas p110α was first activated by tyrosine kinases and then further induced by active Ras. Interference with p110α and -β activity diminished the activation of downstream effectors with different kinetics, with a selective action of p110α in blocking early G1 events. We show that inhibition of either p110α or p110β reduced cell cycle entry. These results reveal that PI3Kα and -β present distinct activation requirements and kinetics in G1 phase, with a selective action of PI3Kα at the G0/G1 phase transition. Nevertheless, PI3Kα and -β both regulate S-phase entry.


1991 ◽  
Vol 13 ◽  
pp. S82
Author(s):  
F. Zindy ◽  
E. Lagias ◽  
P. Boccarini ◽  
U. Strausberg ◽  
X. Chenivesse ◽  
...  
Keyword(s):  
Cyclin A ◽  

1993 ◽  
Vol 13 (10) ◽  
pp. 6537-6546 ◽  
Author(s):  
M Arroyo ◽  
S Bagchi ◽  
P Raychaudhuri

The transcription factor E2F has been shown to be involved in the expression of several cell cycle-regulated genes, and the activity of this factor is controlled by cellular proteins such as pRB and p107. E2F is also a target of the DNA virus oncoproteins (adenovirus E1A, simian virus 40 T antigen, and human papillomavirus [HPV] E7) (see the review by J. R. Nevins [Science 258: 424-429, 1992]). These viral oncoproteins dissociate an inactive complex between E2F and the retinoblastoma tumor suppressor protein (pRB), and this dissociation of the E2F-pRB complex correlates with a stimulation of the E2F-dependent transcription. In the S phase of the cell cycle, E2F forms a complex with p107, cyclin A, and the cdk2 kinase (E2F-cyclin A complex). The cellular function of this S-phase-specific complex is unclear. The adenovirus E1A protein dissociates the E2F-cyclin A complex. The HPV type 16 (HPV-16) E7 protein, which possesses significant sequence homology with E1A, does not dissociate the E2F-cyclin A complex. We find that the HPV-16 E7 protein associates very efficiently with the E2F-cyclin A complex. This association is dependent on the sequences that are also necessary for the transforming activity of E7. Moreover, the E7 protein of a low-risk HPV (type 6b) is much less efficient in binding to the E2F-cyclin A complex compared with that of the high-risk type. We also find that the E2F-cyclin A complex remains endogenously associated with the E7 protein in extracts of Caski cells, which express high levels of HPV-16 E7 protein. Finally, we have extensively purified the E2F-cyclin A complex from mouse L-cell extracts and show that, in cell extracts, the E2F-cyclin A complex remains associated with other cellular proteins.


1993 ◽  
Vol 106 (2) ◽  
pp. 535-544 ◽  
Author(s):  
G. Maridor ◽  
P. Gallant ◽  
R. Golsteyn ◽  
E.A. Nigg

Cyclins control the activities of cyclin-dependent protein kinases (cdks) and hence play a key role in cell cycle regulation. While B-type cyclins associate with p34cdc2 to trigger entry into mitosis, progression through S phase requires cyclin A, presumably in association with p33cdk2. Vertebrate A- and B-type cyclins display strikingly distinct subcellular localizations, but the mechanisms underlying these differential distributions are unknown. Here, we have begun to study the requirements for nuclear localization of cyclin A. We have isolated a cDNA coding for chicken cyclin A and constructed a series of deletion mutants. These were then transfected into HeLa cells, and the subcellular distribution of the mutant cyclin A proteins was determined by indirect immunofluorescence microscopy. In parallel, the cyclin A mutants were assayed for their ability to form complexes with cdk subunits. We found that deletion of more than 100 residues from the N terminus of cyclin A did not impair nuclear localization or cdk subunit binding and kinase activation. In contrast, removal of as few as 15 residues from the C terminus, or deletion of part of the internal cyclin box domain, abolished nuclear localization of cyclin A as well as its ability to bind to and activate cdk subunits. These results suggest that nuclear transport of cyclin A may depend on the formation of multiprotein complexes comprising cdk catalytic subunits.


Sign in / Sign up

Export Citation Format

Share Document