scholarly journals Rap1 in Candida albicans: an Unusual Structural Organization and a Critical Function in Suppressing Telomere Recombination

2009 ◽  
Vol 30 (5) ◽  
pp. 1254-1268 ◽  
Author(s):  
Eun Young Yu ◽  
Wei-Feng Yen ◽  
Olga Steinberg-Neifach ◽  
Neal F. Lue

ABSTRACT Rap1 (repressor activator protein 1) is a conserved multifunctional protein initially identified as a transcriptional regulator of ribosomal protein genes in Saccharomyces cerevisiae but subsequently shown to play diverse functions at multiple chromosomal loci, including telomeres. The function of Rap1 appears to be evolutionarily plastic, especially in the budding yeast lineages. We report here our biochemical and molecular genetic characterizations of Candida albicans Rap1, which exhibits an unusual, miniaturized domain organization in comparison to the S. cerevisiae homologue. We show that in contrast to S. cerevisiae, C. albicans RAP1 is not essential for cell viability but is critical for maintaining normal telomere length and structure. The rap1 null mutant exhibits drastic telomere-length dysregulation and accumulates high levels of telomere circles, which can be largely attributed to aberrant recombination activities at telomeres. Analysis of combination mutants indicates that Rap1 and other telomere proteins mediate overlapping but nonredundant roles in telomere protection. Consistent with the telomere phenotypes of the mutant, C. albicans Rap1 is localized to telomeres in vivo and recognizes the unusual telomere repeat unit with high affinity and sequence specificity in vitro. The DNA-binding Myb domain of C. albicans Rap1 is sufficient to suppress most of the telomere aberrations observed in the null mutant. Notably, we were unable to detect specific binding of C. albicans Rap1 to gene promoters in vivo or in vitro, suggesting that its functions are more circumscribed in this organism. Our findings provide insights on the evolution and mechanistic plasticity of a widely conserved and functionally critical telomere component.

2008 ◽  
Vol 28 (7) ◽  
pp. 2380-2390 ◽  
Author(s):  
Hong Ji ◽  
Christopher J. Adkins ◽  
Bethany R. Cartwright ◽  
Katherine L. Friedman

ABSTRACT In Saccharomyces cerevisiae, the sequence-specific binding of the negative regulator Rap1p provides a mechanism to measure telomere length: as the telomere length increases, the binding of additional Rap1p inhibits telomerase activity in cis. We provide evidence that the association of Rap1p with telomeric DNA in vivo occurs in part by sequence-independent mechanisms. Specific mutations in EST2 (est2-LT) reduce the association of Rap1p with telomeric DNA in vivo. As a result, telomeres are abnormally long yet bind an amount of Rap1p equivalent to that observed at wild-type telomeres. This behavior contrasts with that of a second mutation in EST2 (est2-up34) that increases bound Rap1p as expected for a strain with long telomeres. Telomere sequences are subtly altered in est2-LT strains, but similar changes in est2-up34 telomeres suggest that sequence abnormalities are a consequence, not a cause, of overelongation. Indeed, est2-LT telomeres bind Rap1p indistinguishably from the wild type in vitro. Taken together, these results suggest that Est2p can directly or indirectly influence the binding of Rap1p to telomeric DNA, implicating telomerase in roles both upstream and downstream of Rap1p in telomere length homeostasis.


2000 ◽  
Vol 68 (4) ◽  
pp. 1997-2002 ◽  
Author(s):  
Noboru Tsuchimori ◽  
Laura L. Sharkey ◽  
William A. Fonzi ◽  
Samuel W. French ◽  
John E. Edwards ◽  
...  

ABSTRACT The Candida albicans gene HWP1 encodes a surface protein that is required for normal hyphal development in vitro. We used mutants lacking one or both alleles of HWP1to investigate the role of this gene in virulence. Mice infected intravenously with the homozygous hwp1 null mutant, CAL3, survived a median of >14 days, whereas mice infected with a control strain containing two functional alleles of HWP1 survived only 3.5 days. After 1 day of infection, all strains produced similar levels of infection in the kidneys, spleen, and blood. However, after 2 and 3 days, there was a significant decrease in the number of organisms in the kidneys of the mice infected with CAL3. This finding suggests that the hwp1 homozygous null mutant is normal in its ability to initiate infection but deficient in its capacity to maintain infection. CAL3 also germinated minimally in the kidneys. The ability of the heterozygous null mutant to germinate and cause mortality in mice was intermediate to CAL3, suggesting a gene dosage effect. To investigate potential mechanisms for the diminished virulence of CAL3, we examined its interactions with endothelial cells and neutrophils in vitro. CAL3 caused less endothelial cell injury than the heterozygoushwp1 mutant. We conclude that the HWP1 gene product is important for both in vivo hyphal development and pathogenicity of C. albicans. Also, the ability to form filaments may be critical for candidal virulence by enabling the fungus to induce cellular injury and maintain a deep-seated infection.


2020 ◽  
Vol 48 (16) ◽  
pp. 8914-8926
Author(s):  
Erin E Cutts ◽  
J Barry Egan ◽  
Ian B Dodd ◽  
Keith E Shearwin

Abstract The Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl's repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


2009 ◽  
Vol 9 (2) ◽  
pp. 266-277 ◽  
Author(s):  
Suresh K. A. Palanisamy ◽  
Melissa A. Ramirez ◽  
Michael Lorenz ◽  
Samuel A. Lee

ABSTRACT To investigate the role of the prevacuolar secretion pathway in biofilm formation and virulence in Candida albicans, we cloned and analyzed the C. albicans homolog of the Saccharomyces cerevisiae prevacuolar trafficking gene PEP12. C. albicans PEP12 encodes a deduced t-SNARE that is 28% identical to S. cerevisiae Pep12p, and plasmids bearing C. albicans PEP12 complemented the abnormal vacuolar morphology and temperature-sensitive growth of an S. cerevisiae pep12 null mutant. The C. albicans pep12 Δ null mutant was defective in endocytosis and vacuolar acidification and accumulated 40- to 60-nm cytoplasmic vesicles near the plasma membrane. Secretory defects included increased extracellular proteolytic activity and absent lipolytic activity. The pep12Δ null mutant was more sensitive to cell wall stresses and antifungal agents than the isogenic complemented strain or the control strain DAY185. Notably, the biofilm formed by the pep12Δ mutant was reduced in overall mass and fragmented completely upon the slightest disturbance. The pep12Δ mutant was markedly reduced in virulence in an in vitro macrophage infection model and an in vivo mouse model of disseminated candidiasis. These results suggest that C. albicans PEP12 plays a key role in biofilm integrity and in vivo virulence.


2019 ◽  
Author(s):  
Erin Cutts ◽  
J. Barry Egan ◽  
Ian Dodd ◽  
Keith Shearwin

AbstractThe Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA, and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs. By analysing Apl’s repression of pR and pL, and the effect of operator mutants in vivo with a simple mathematical model, we were able to extract estimates of binding energies for single specific and non-specific sites and for Apl cooperativity, revealing that Apl monomers bind to DNA with low sequence specificity but with strong cooperativity between immediate neighbours. This model fit was then independently validated with in vitro data. The model we employed here is a simple but powerful tool that enabled better understanding of the balance between binding affinity and cooperativity required for RDF function. A modelling approach such as this is broadly applicable to other systems.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Huihui Xu ◽  
Tianshu Fang ◽  
Raha Parvizi Omran ◽  
Malcolm Whiteway ◽  
Linghuo Jiang

Abstract Background The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. Methods An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. Results RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5′-GGAGGC(G/A)C(T/A)G-3′], which is different from the putative CaCrz1-binding motif [5′-G(C/T)GGT-3′] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5′-GNGGC(G/T)CA-3′]. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. Conclusions CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5′-TGAGGGACTG-3′ site in its promoter.


2019 ◽  
Vol 19 (12) ◽  
pp. 950-960
Author(s):  
Soghra Farzipour ◽  
Seyed Jalal Hosseinimehr

Tumor-targeting peptides have been generally developed for the overexpression of tumor specific receptors in cancer cells. The use of specific radiolabeled peptide allows tumor visualization by single photon emission computed tomography (SPECT) and positron emission tomography (PET) tools. The high affinity and specific binding of radiolabeled peptide are focusing on tumoral receptors. The character of the peptide itself, in particular, its complex molecular structure and behaviors influence on its specific interaction with receptors which are overexpressed in tumor. This review summarizes various strategies which are applied for the expansion of radiolabeled peptides for tumor targeting based on in vitro and in vivo specific tumor data and then their data were compared to find any correlation between these experiments. With a careful look at previous studies, it can be found that in vitro unblock-block ratio was unable to correlate the tumor to muscle ratio and the success of radiolabeled peptide for in vivo tumor targeting. The introduction of modifiers’ approaches, nature of peptides, and type of chelators and co-ligands have mixed effect on the in vitro and in vivo specificity of radiolabeled peptides.


Author(s):  
Thu Hang Lai ◽  
Magali Toussaint ◽  
Rodrigo Teodoro ◽  
Sladjana Dukić-Stefanović ◽  
Daniel Gündel ◽  
...  

Abstract Purpose The adenosine A2A receptor has emerged as a therapeutic target for multiple diseases, and thus the non-invasive imaging of the expression or occupancy of the A2A receptor has potential to contribute to diagnosis and drug development. We aimed at the development of a metabolically stable A2A receptor radiotracer and report herein the preclinical evaluation of [18F]FLUDA, a deuterated isotopologue of [18F]FESCH. Methods [18F]FLUDA was synthesized by a two-step one-pot approach and evaluated in vitro by autoradiographic studies as well as in vivo by metabolism and dynamic PET/MRI studies in mice and piglets under baseline and blocking conditions. A single-dose toxicity study was performed in rats. Results [18F]FLUDA was obtained with a radiochemical yield of 19% and molar activities of 72–180 GBq/μmol. Autoradiography proved A2A receptor–specific accumulation of [18F]FLUDA in the striatum of a mouse and pig brain. In vivo evaluation in mice revealed improved stability of [18F]FLUDA compared to that of [18F]FESCH, resulting in the absence of brain-penetrant radiometabolites. Furthermore, the radiometabolites detected in piglets are expected to have a low tendency for brain penetration. PET/MRI studies confirmed high specific binding of [18F]FLUDA towards striatal A2A receptor with a maximum specific-to-non-specific binding ratio in mice of 8.3. The toxicity study revealed no adverse effects of FLUDA up to 30 μg/kg, ~ 4000-fold the dose applied in human PET studies using [18F]FLUDA. Conclusions The new radiotracer [18F]FLUDA is suitable to detect the availability of the A2A receptor in the brain with high target specificity. It is regarded ready for human application.


Sign in / Sign up

Export Citation Format

Share Document