scholarly journals Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is Not Required for Brown Adipogenesis but Regulates Brown Adipose Tissue Development and Function

2016 ◽  
Vol 36 (15) ◽  
pp. 2027-2038 ◽  
Author(s):  
Hongyi Zhou ◽  
Stephen M. Black ◽  
Tyler W. Benson ◽  
Neal L. Weintraub ◽  
Weiqin Chen

Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion ofBscl2in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis.

1998 ◽  
Vol 331 (1) ◽  
pp. 121-127 ◽  
Author(s):  
Josep A. VILLENA ◽  
Octavi VIÑAS ◽  
Teresa MAMPEL ◽  
Roser IGLESIAS ◽  
Marta GIRALT ◽  
...  

The regulation of transcription of the gene for the β subunit of the FoF1 ATP synthase (ATPsynβ) in brown adipose tissue has been studied as a model to determine the molecular mechanisms for mitochondrial biogenesis associated with brown adipocyte differentiation. The expression of the ATPsynβ mRNA is induced during the brown adipocyte differentiation that occurs during murine prenatal development or when brown adipocytes differentiate in culture. This induction occurs in parallel with enhanced gene expression for other nuclear and mitochondrially-encoded components of the respiratory chain/oxidative phosphorylation system (OXPHOS). Transient transfection assays indicated that the expression of the ATPsynβ gene promoter is higher in differentiated HIB-1B brown adipocytes than in non-differentiated HIB-1B cells. A major transcriptional regulatory site was identified between nt -306 and -266 in the ATPsynβ promoter. This element has a higher enhancer capacity in differentiated brown adipocyte HIB-1B cells than in non-differentiated cells. Electrophoretic shift analysis indicated that Sp1and nuclear respiratory factor-2/GA-binding protein (NRF2/GABP) were the main nuclear proteins present in brown adipose tissue that bind this site. Double-point mutant analysis indicated a major role for the NRF2/GABP site in the enhancer capacity of this element in brown fat cells. It is proposed that NRF2/GABP plays a pivotal role in the co-ordinated enhancement of OXPHOS gene expression associated with mitochondrial biogenesis in brown adipocyte differentiation.


2020 ◽  
Author(s):  
Stefania Carobbio ◽  
Anne-Claire Guenantin ◽  
Myriam Bahri ◽  
Isabella Samuelson ◽  
Floris Honig ◽  
...  

AbstractIncreasing brown adipose tissue (BAT) mass and activation has been proposed as a potential therapeutic strategy to treat obesity and associated cardiometabolic complications. Given that obese and diabetic patients possess low amounts of BAT, an efficient way to expand their BAT mass would be necessary if BAT is to be useful. Currently, there is limited knowledge about how human BAT develops, differentiates, and is optimally activated. Moreover, to have access to human BAT is challenging, given its low volume and being anatomically dispersed. These constrain makes detailed mechanistic studies related to BAT development and function in humans virtually impossible. To overcome these limitations, we have developed a human-relevant new protocol for the differentiation of human pluripotent stem cells (hPSCs) into brown adipocytes (BAs). Unique to this protocol is that it is chemically-defined to recapitulate a physiological step-by-step developmental path of BAT that captures transient paraxial mesoderm and BAT progenitor states, on its way to reaching the adipocyte stage finally. These hPSC-derived BAs express brown adipocyte and thermogenic markers, are insulin sensitive, and respond to β-adrenergic stimuli. This new protocol is a scalable tool to study human BAs during development.


2021 ◽  
Author(s):  
Mingsheng Ye ◽  
Liping Luo ◽  
Qi Guo ◽  
Guanghua Lei ◽  
Chao Zeng ◽  
...  

Brown adipose tissue (BAT) is emerging as a target to beat obesity through the dissipation of chemical energy to heat. However, the molecular mechanisms of brown adipocyte thermogenesis remain to be further elucidated. Here, we show that KCTD10, a member of the polymerase delta-interacting protein 1 (PDIP1) family, was reduced in BAT by cold stress and a β3 adrenoceptor agonist. Moreover, KCTD10 level increased in the BAT of obese mice, and KCTD10 overexpression attenuates uncoupling protein 1 (UCP1) expression in primary brown adipocytes. BAT-specific KCTD10 knockdown mice had increased thermogenesis and cold tolerance protecting from high fat diet (HFD)-induced obesity. Conversely, overexpression of KCTD10 in BAT caused reduced thermogenesis, cold intolerance, and obesity. Mechanistically, inhibiting Notch signaling restored the KCTD10 overexpression suppressed thermogenesis. Our study presents that KCTD10 serves as an upstream regulator of notch signaling pathway to regulate BAT thermogenesis and whole-body metabolic function.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Won Kon Kim ◽  
Baek-Soo Han

Abstract Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. These results suggested that the IDH1–α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


2020 ◽  
Vol 21 (21) ◽  
pp. 7907
Author(s):  
Meike Dahlhaus ◽  
Julian Roos ◽  
Daniel Engel ◽  
Daniel Tews ◽  
Daniel Halbgebauer ◽  
...  

Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question.


Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 2992-3000 ◽  
Author(s):  
Marta Giralt ◽  
Francesc Villarroya

Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis in mammals. Rodent studies indicated that BAT thermogenic activity may protect against obesity. Recent findings using novel radiodiagnosis procedures revealed unanticipated high activity of BAT in adult humans. Moreover, complex processes of cell differentiation leading to the appearance of active brown adipocytes have been recently identified. The brown adipocytes clustered in defined anatomical BAT depots of rodents arise from mesenchymal precursor cells common to the myogenic cell lineage. They are being called “classical” or “developmentally programmed” brown adipocytes. However, brown adipocytes may appear after thermogenic stimuli at anatomical sites corresponding to white adipose tissue (WAT). This process is called the “browning” of WAT. The brown adipocytes appearing in WAT derive from precursor cells different from those in classical BAT and are closer to the white adipocyte cell lineage. The brown adipocytes appearing in WAT are often called “inducible, beige, or brite.” The appearance of these inducible brown adipocytes in WAT may also involve transdifferentiation processes of white-to-brown adipose cells. There is no evidence that the ultimate thermogenic function of the beige/brite adipocytes differs from that of classical brown adipocytes, although some genetic data in rodents suggest a relevant role of the browning process in protection against obesity. Although the activation of classical BAT and the browning process share common mechanisms of induction (eg, noradrenergic-mediated induction by cold), multiple novel adrenergic-independent endocrine factors that activate BAT and the browning of WAT have been identified recently. In adult humans, BAT is mainly composed of beige/brite adipocytes, although recent data indicate the persistence of classical BAT at some anatomical sites. Understanding the biological processes controlling brown adipocyte activity and differentiation could help the design of BAT-focused strategies to increase energy expenditure and fight against obesity.


2012 ◽  
Vol 443 (3) ◽  
pp. 799-810 ◽  
Author(s):  
Jordi Armengol ◽  
Josep A. Villena ◽  
Elayne Hondares ◽  
María C. Carmona ◽  
Hei Sook Sul ◽  
...  

Pref-1 (pre-adipocyte factor-1) is known to play a central role in regulating white adipocyte differentiation, but the role of Pref-1 in BAT (brown adipose tissue) has not been analysed. In the present study we found that Pref-1 expression is high in fetal BAT and declines progressively after birth. However, Pref-1-null mice showed unaltered fetal development of BAT, but exhibited signs of over-activation of BAT thermogenesis in the post-natal period. In C/EBP (CCAAT/enhancer-binding protein) α-null mice, a rodent model of impaired fetal BAT differentiation, Pref-1 was dramatically overexpressed, in association with reduced expression of the Ucp1 (uncoupling protein 1) gene, a BAT-specific marker of thermogenic differentiation. In brown adipocyte cell culture models, Pref-1 was mostly expressed in pre-adipocytes and declined with brown adipocyte differentiation. The transcription factor C/EBPδ activated the Pref-1 gene transcription in brown adipocytes, through binding to the proximal promoter region. Accordingly, siRNA (small interfering RNA)-induced C/EBPδ knockdown led to reduced Pref-1 gene expression. This effect is consistent with the observed overexpression of C/EBPδ in C/EBPα-null BAT and high expression of C/EBPδ in brown pre-adipocytes. Dexamethasone treatment of brown pre-adipocytes suppressed Pref-1 down-regulation occurring throughout the brown adipocyte differentiation process, increased the expression of C/EBPδ and strongly impaired expression of the thermogenic markers UCP1 and PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-α]. However, it did not alter normal fat accumulation or expression of non-BAT-specific genes. Collectively, these results specifically implicate Pref-1 in controlling the thermogenic gene expression program in BAT, and identify C/EBPδ as a novel transcriptional regulator of Pref-1 gene expression that may be related to the specific role of glucocorticoids in BAT differentiation.


1989 ◽  
Vol 263 (2) ◽  
pp. 341-345 ◽  
Author(s):  
J A Woodward ◽  
E D Saggerson

1. Rats were made hypothyroid by giving them a low-iodine diet with propylthiouracil for 4 weeks, or were made hyperthyroid by injection with tri-iodothyronine (T3) over a 3-day period. 2. Brown adipocytes were isolated from the interscapular depots of these animals or from their euthyroid controls, followed by isolation of mitochondria from the cells. 3. Relative to cell DNA content, hypothyroidism decreased the maximum binding (Bmax.) of [3H]GDP to mitochondria by 50%. T3 treatment increased binding by 37%. 4. These findings, which are discussed in relation to previously observed changes in brown adipose tissue after alteration of thyroid status, suggest that mitochondrial uncoupling for thermogenesis is less or more effective in hypothyroidism or hyperthyroidism respectively.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Craig Porter ◽  
Elisabet Børsheim ◽  
Labros S. Sidossis

The function ascribed to brown adipose tissue in humans has long been confined to thermoregulation in neonates, where this thermogenic capacity was thought lost with maturation. Recently, brown adipose tissue depots have been identified in adult humans. The significant oxidative capacity of brown adipocytes and the ability of their mitochondria to respire independently of ATP production, has led to renewed interest in the role that these adipocytes play in human energy metabolism. In our view, there is a need for robust physiological studies determining the relationship between molecular signatures of brown adipose tissue, adipose tissue mitochondrial function, and whole body energy metabolism, in order to elucidate the significance of thermogenic adipose tissue in humans. Until such information is available, the role of thermogenic adipose tissue in human metabolism and the potential that these adipocytes may prevent or treat obesity and metabolic diseases in humans will remain unknown. In this article, we summarize the recent literature pertaining to brown adipose tissue function with the aims of drawing the readers’ attention to the lack of data concerning the role of brown adipocytes in human physiology, and to the potential limitations of current research strategies.


2012 ◽  
Vol 50 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Juan Liu ◽  
Xiaocen Kong ◽  
Long Wang ◽  
Hanmei Qi ◽  
Wenjuan Di ◽  
...  

Brown adipose tissue (BAT) increases energy expenditure and is an attractive therapeutic target for obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), an amplifier of local glucocorticoid activity, has been shown to modulate white adipose tissue (WAT) metabolism and function. In this study, we investigated the roles of 11β-HSD1 in regulating BAT function. We observed a significant increase in the expression of BAT-specific genes, including UCP1, Cidea, Cox7a1, and Cox8b, in BVT.2733 (a selective inhibitor of 11β-HSD1)-treated and 11β-HSD1-deficient primary brown adipocytes of mice. By contrast, a remarkable decrease in BAT-specific gene expression was detected in brown adipocytes when 11β-HSD1 was overexpressed, which effect was reversed by BVT.2733 treatment. Consistent with the in vitro results, expression of a range of genes related to brown fat function in high-fat diet-fed mice treated with BVT.2733. Our results indicate that 11β-HSD1 acts as a vital regulator that controls the expression of genes related to brown fat function and as such may become a potential target in preventing obesity.


Sign in / Sign up

Export Citation Format

Share Document