scholarly journals Essential roles of 11β-HSD1 in regulating brown adipocyte function

2012 ◽  
Vol 50 (1) ◽  
pp. 103-113 ◽  
Author(s):  
Juan Liu ◽  
Xiaocen Kong ◽  
Long Wang ◽  
Hanmei Qi ◽  
Wenjuan Di ◽  
...  

Brown adipose tissue (BAT) increases energy expenditure and is an attractive therapeutic target for obesity. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1), an amplifier of local glucocorticoid activity, has been shown to modulate white adipose tissue (WAT) metabolism and function. In this study, we investigated the roles of 11β-HSD1 in regulating BAT function. We observed a significant increase in the expression of BAT-specific genes, including UCP1, Cidea, Cox7a1, and Cox8b, in BVT.2733 (a selective inhibitor of 11β-HSD1)-treated and 11β-HSD1-deficient primary brown adipocytes of mice. By contrast, a remarkable decrease in BAT-specific gene expression was detected in brown adipocytes when 11β-HSD1 was overexpressed, which effect was reversed by BVT.2733 treatment. Consistent with the in vitro results, expression of a range of genes related to brown fat function in high-fat diet-fed mice treated with BVT.2733. Our results indicate that 11β-HSD1 acts as a vital regulator that controls the expression of genes related to brown fat function and as such may become a potential target in preventing obesity.

2014 ◽  
Vol 306 (4) ◽  
pp. E363-E372 ◽  
Author(s):  
Ruidan Xue ◽  
Yun Wan ◽  
Shuo Zhang ◽  
Qiongyue Zhang ◽  
Hongying Ye ◽  
...  

There are two different types of fat present in mammals: white adipose tissue, the primary site of energy storage, and brown adipose tissue, which is specializes in energy expenditure. Factors that specify the developmental fate and function of brown fat are poorly understood. Bone morphogenic proteins (BMPs) play an important role in adipogenesis. While BMP4 is capable of triggering commitment of stem cells to the white adipocyte lineage, BMP7 triggers commitment of progenitor cells to a brown adipocyte lineage and activates brown adipogenesis. To investigate the differential effects of BMPs on the development of adipocytes, C3H10T1/2 pluripotent cells were pretreated with BMP4 and BMP7, followed by different adipogenic induction cocktails. Both BMP4 and BMP7 unexpectedly activated a full program of brown adipogenesis, including induction of the brown fat-defining marker uncoupling protein-1 (UCP1), increasing the expression of early regulators of brown fat fate PRDM16 (PR domain-containing 16) and induction of mitochondrial biogenesis and function. Implantation of BMP4-pretreated C3H10T1/2 cells into nude mice resulted in the development of adipose tissue depots containing UCP1-positive brown adipocytes. Interestingly, BMP4 could also induce brown fat-like adipocytes in both white and brown preadipocytes, thereby decreasing the classical brown adipocyte marker Zic1 and increasing the recently identified beige adipocyte marker TMEM26. The data indicate an important role for BMP4 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro and offers a potentially new therapeutic approach for the treatment of obesity.


2016 ◽  
Vol 36 (15) ◽  
pp. 2027-2038 ◽  
Author(s):  
Hongyi Zhou ◽  
Stephen M. Black ◽  
Tyler W. Benson ◽  
Neal L. Weintraub ◽  
Weiqin Chen

Brown adipose tissue (BAT) plays a unique role in regulating whole-body energy homeostasis by dissipating energy through thermogenic uncoupling. Berardinelli-Seip congenital lipodystrophy (BSCL) type 2 (BSCL2; also known as seipin) is a lipodystrophy-associated endoplasmic reticulum membrane protein essential for white adipocyte differentiation. Whether BSCL2 directly participates in brown adipocyte differentiation, development, and function, however, is unknown. We show that BSCL2 expression is increased during brown adipocyte differentiation. Its deletion does not impair the classic brown adipogenic program but rather induces premature activation of differentiating brown adipocytes through cyclic AMP (cAMP)/protein kinase A (PKA)-mediated lipolysis and fatty acid and glucose oxidation, as well as uncoupling. cAMP/PKA signaling is physiologically activated during neonatal BAT development in wild-type mice and greatly potentiated in mice with genetic deletion ofBscl2in brown progenitor cells, leading to reduced BAT mass and lipid content during neonatal brown fat formation. However, prolonged overactivation of cAMP/PKA signaling during BAT development ultimately causes apoptosis of brown adipocytes through inflammation, resulting in BAT atrophy and increased overall adiposity in adult mice. These findings reveal a key cell-autonomous role for BSCL2 in controlling BAT mass/activity and provide novel insights into therapeutic strategies targeting cAMP/PKA signaling to regulate brown adipocyte function, viability, and metabolic homeostasis.


2020 ◽  
Author(s):  
Stefania Carobbio ◽  
Anne-Claire Guenantin ◽  
Myriam Bahri ◽  
Isabella Samuelson ◽  
Floris Honig ◽  
...  

AbstractIncreasing brown adipose tissue (BAT) mass and activation has been proposed as a potential therapeutic strategy to treat obesity and associated cardiometabolic complications. Given that obese and diabetic patients possess low amounts of BAT, an efficient way to expand their BAT mass would be necessary if BAT is to be useful. Currently, there is limited knowledge about how human BAT develops, differentiates, and is optimally activated. Moreover, to have access to human BAT is challenging, given its low volume and being anatomically dispersed. These constrain makes detailed mechanistic studies related to BAT development and function in humans virtually impossible. To overcome these limitations, we have developed a human-relevant new protocol for the differentiation of human pluripotent stem cells (hPSCs) into brown adipocytes (BAs). Unique to this protocol is that it is chemically-defined to recapitulate a physiological step-by-step developmental path of BAT that captures transient paraxial mesoderm and BAT progenitor states, on its way to reaching the adipocyte stage finally. These hPSC-derived BAs express brown adipocyte and thermogenic markers, are insulin sensitive, and respond to β-adrenergic stimuli. This new protocol is a scalable tool to study human BAs during development.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saki Takayanagi ◽  
Kengo Watanabe ◽  
Takeshi Maruyama ◽  
Motoyuki Ogawa ◽  
Kazuhiro Morishita ◽  
...  

AbstractRecent studies have shown that adipose tissue is an immunological organ. While inflammation in energy-storing white adipose tissues has been the focus of intense research, the regulatory mechanisms of inflammation in heat-producing brown adipose tissues remain largely unknown. We previously identified apoptosis signal-regulating kinase 1 (ASK1) as a critical regulator of brown adipocyte maturation; the PKA-ASK1-p38 axis facilitates uncoupling protein 1 (UCP1) induction cell-autonomously. Here, we show that ASK1 suppresses an innate immune pathway and contributes to maintenance of brown adipocytes. We report a novel chemical pull-down method for endogenous kinases using analog sensitive kinase allele (ASKA) technology and identify an ASK1 interactor in brown adipocytes, receptor-interacting serine/threonine-protein kinase 2 (RIPK2). ASK1 disrupts the RIPK2 signaling complex and inhibits the NOD-RIPK2 pathway to downregulate the production of inflammatory cytokines. As a potential biological significance, an in vitro model for intercellular regulation suggests that ASK1 facilitates the expression of UCP1 through the suppression of inflammatory cytokine production. In parallel to our previous report on the PKA-ASK1-p38 axis, our work raises the possibility of an auxiliary role of ASK1 in brown adipocyte maintenance through neutralizing the thermogenesis-suppressive effect of the NOD-RIPK2 pathway.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Won Kon Kim ◽  
Baek-Soo Han

Abstract Brown adipocytes play important roles in the regulation of energy homeostasis by uncoupling protein 1-mediated non-shivering thermogenesis. Recent studies suggest that brown adipocytes as novel therapeutic targets for combating obesity and associated diseases, such as type II diabetes. However, the molecular mechanisms underlying brown adipocyte differentiation and function are not fully understood. We employed previous findings obtained through proteomic studies performed to assess proteins displaying altered levels during brown adipocyte differentiation. Here, we performed assays to determine the functional significance of their altered levels during brown adipogenesis and development. We identified isocitrate dehydrogenase 1 (IDH1) as upregulated during brown adipocyte differentiation, with subsequent investigations revealing that ectopic expression of IDH1 inhibited brown adipogenesis, whereas suppression of IDH1 levels promoted differentiation of brown adipocytes. Additionally, Idh1 overexpression resulted in increased levels of intracellular α-ketoglutarate (α-KG) and inhibited the expression of genes involved in brown adipogenesis. Exogenous treatment with α-KG reduced brown adipogenesis during the early phase of differentiation, and ChIP analysis revealed that IDH1-mediated α-KG reduced trimethylation of histone H3 lysine 4 in the promoters of genes associated with brown adipogenesis. Furthermore, administration of α-KG decreased adipogenic gene expression by modulating histone methylation in brown adipose tissues of mice. These results suggested that the IDH1–α-KG axis plays an important role in regulating brown adipocyte differentiation and might represent a therapeutic target for treating metabolic diseases.


Author(s):  
Fubiao Shi ◽  
Sheila Collins

Abstractβ-adrenergic receptors (βARs) are well established for conveying the signal from catecholamines to adipocytes. Acting through the second messenger cyclic adenosine monophosphate (cAMP) they stimulate lipolysis and also increase the activity of brown adipocytes and the ‘browning’ of adipocytes within white fat depots (so-called ‘brite’ or ‘beige’ adipocytes). Brown adipose tissue mitochondria are enriched with uncoupling protein 1 (UCP1), which is a regulated proton channel that allows the dissipation of chemical energy in the form of heat. The discovery of functional brown adipocytes in humans and inducible brown-like (‘beige’ or ‘brite’) adipocytes in rodents have suggested that recruitment and activation of these thermogenic adipocytes could be a promising strategy to increase energy expenditure for obesity therapy. More recently, the cardiac natriuretic peptides and their second messenger cyclic guanosine monophosphate (cGMP) have gained attention as a parallel signaling pathway in adipocytes, with some unique features. In this review, we begin with some important historical work that touches upon the regulation of brown adipocyte development and physiology. We then provide a synopsis of some recent advances in the signaling cascades from β-adrenergic agonists and natriuretic peptides to drive thermogenic gene expression in the adipocytes and how these two pathways converge at a number of unexpected points. Finally, moving from the physiologic hormonal signaling, we discuss yet another level of control downstream of these signals: the growing appreciation of the emerging roles of non-coding RNAs as important regulators of brown adipocyte formation and function. In this review, we discuss new developments in our understanding of the signaling mechanisms and factors including new secreted proteins and novel non-coding RNAs that control the function as well as the plasticity of the brown/beige adipose tissue as it responds to the energy needs and environmental conditions of the organism.


Endocrinology ◽  
2013 ◽  
Vol 154 (9) ◽  
pp. 2992-3000 ◽  
Author(s):  
Marta Giralt ◽  
Francesc Villarroya

Brown adipose tissue (BAT) is a major site of nonshivering thermogenesis in mammals. Rodent studies indicated that BAT thermogenic activity may protect against obesity. Recent findings using novel radiodiagnosis procedures revealed unanticipated high activity of BAT in adult humans. Moreover, complex processes of cell differentiation leading to the appearance of active brown adipocytes have been recently identified. The brown adipocytes clustered in defined anatomical BAT depots of rodents arise from mesenchymal precursor cells common to the myogenic cell lineage. They are being called “classical” or “developmentally programmed” brown adipocytes. However, brown adipocytes may appear after thermogenic stimuli at anatomical sites corresponding to white adipose tissue (WAT). This process is called the “browning” of WAT. The brown adipocytes appearing in WAT derive from precursor cells different from those in classical BAT and are closer to the white adipocyte cell lineage. The brown adipocytes appearing in WAT are often called “inducible, beige, or brite.” The appearance of these inducible brown adipocytes in WAT may also involve transdifferentiation processes of white-to-brown adipose cells. There is no evidence that the ultimate thermogenic function of the beige/brite adipocytes differs from that of classical brown adipocytes, although some genetic data in rodents suggest a relevant role of the browning process in protection against obesity. Although the activation of classical BAT and the browning process share common mechanisms of induction (eg, noradrenergic-mediated induction by cold), multiple novel adrenergic-independent endocrine factors that activate BAT and the browning of WAT have been identified recently. In adult humans, BAT is mainly composed of beige/brite adipocytes, although recent data indicate the persistence of classical BAT at some anatomical sites. Understanding the biological processes controlling brown adipocyte activity and differentiation could help the design of BAT-focused strategies to increase energy expenditure and fight against obesity.


2000 ◽  
Vol 279 (3) ◽  
pp. C670-C681 ◽  
Author(s):  
J. Himms-Hagen ◽  
A. Melnyk ◽  
M. C. Zingaretti ◽  
E. Ceresi ◽  
G. Barbatelli ◽  
...  

Multilocular, mitochondria-rich adipocytes appear in white adipose tissue (WAT) of rats treated with the β3-adrenoceptor agonist, CL-316243 (CL). Objectives were to determine whether these multilocular adipocytes derived from cells that already existed in the WAT or from proliferation of precursor cells and whether new mitochondria contained in them were typical brown adipocyte mitochondria. Use of 5-bromodeoxyuridine to identify cells that had undergone mitosis during the CL treatment showed that most multilocular cells derived from cells already present in the WAT. Morphological techniques showed that at least a subpopulation of unilocular adipocytes underwent conversion to multilocular mitochondria-rich adipocytes. A small proportion of multilocular adipocytes (∼8%) was positive for UCP1 by immunohistochemistry. Biochemical techniques showed that mitochondrial protein recovered from WAT increased 10-fold and protein isolated from brown adipose tissue (BAT) doubled in CL-treated rats. Stained gels showed a different protein composition of new mitochondria isolated from WAT from that of mitochondria isolated from BAT. Western blotting showed new mitochondria in WAT to contain both UCP1, but at a much lower concentration than in BAT mitochondria, and UCP3, at a higher concentration than that in BAT mitochondria. We hypothesize that multilocular adipocytes present at 7 days of CL treatment have two origins. First, most come from convertible unilocular adipocytes that become multilocular and make many mitochondria that contain UCP3. Second, some come from a cell that gives rise to more typical brown adipocytes that express UCP1.


1967 ◽  
Vol 45 (11) ◽  
pp. 1763-1771 ◽  
Author(s):  
Jane C. Roberts ◽  
Robert E. Smith

The effects of temperature in vitro upon metabolic rates of homogenates of brown fat and liver from control and cold-acclimated rats have been examined over the range 10–37 °C. At all temperatures, brown adipose tissue exhibits a higher rate of oxygen consumption [Formula: see text] than does liver, α-ketoglutarate being used as substrate. At 10 °C, brown adipose tissue retains a larger percentage (36–38%) of its 37 °C metabolic rate than does liver (22–24%).Q10 values and energies of activation (Ea) have been determined and compared with other data reported for these tissues. At 20 °C, breaks appear in the Arrhenius plots for liver from both control and cold-acclimated rats and also for brown fat from control rats, but not for the brown fat from cold-acclimated rats. Thus brown adipose tissue from cold-acclimated rats retains relatively higher levels of respiration at temperatures below the 20 °C breaking point than does brown fat from control rats.In view of previously reported cold-induced increases in mass, vascularity, and [Formula: see text] of brown fat, this decreased temperature sensitivity in the cold-acclimated rats appears wholly consonant with the adaptive behavior of brown fat in its role as a thermogenic effector.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Pei-qi Wang ◽  
Dao-xiang Pan ◽  
Chun-qiu Hu ◽  
Yu-lin Zhu ◽  
Xiao-jing Liu

Abstract Our previous study showed that feeding mice with vitamin D deficiency diet markedly alleviated high-fat-diet-induced overweight, hyperinsulinemia, and hepatic lipid accumulation. Moreover, vitamin D deficiency up-regulated the expression of uncoupling protein 3 (Ucp3) in white adipose tissue (WAT) and brown adipose tissue (BAT). The present study aimed to further investigate the effects of vitamin D and vitamin D receptor (Vdr) on Ucp1–3 (Ucps) expression in brown adipocyte and the mechanism involved in it. Rat primary brown adipocytes were separated and purified. The effects of the 1,25(OH)2D3 (1,25-dihydroxyvitamin D3; the hormonal form of vitamin D) and Vdr system on Ucps expression in brown adipocytes were investigated in basal condition and activated condition by isoproterenol (ISO) and triiodothyronine (T3). Ucps expression levels were significantly down-regulated by 1,25(OH)2D3 in the activated brown adipocyte. Vdr silencing reversed the down-regulation of Ucps by 1,25(OH)2D3, whereas Vdr overexpression strengthened the down-regulation effects. Hairless protein did express in brown adipocyte and was localized in cell nuclei. 1,25(OH)2D3 increased Hairless protein expression in the cell nuclei. Hairless (Hr) silencing notably elevated Ucps expression in activated condition induced by ISO and T3. Moreover, immunoprecipitation results revealed that Vdr could interact with Hairless, which might contribute to decreasing expression of Vdr target gene Ucps. These data suggest that vitamin D suppresses expression of Ucps in brown adipocyte in a Vdr-dependent manner and the corepressor Hairless protein probably plays a role in the down-regulation.


Sign in / Sign up

Export Citation Format

Share Document