scholarly journals Spreading of a Corepressor Linked to Action of Long-Range Repressor Hairy

2008 ◽  
Vol 28 (8) ◽  
pp. 2792-2802 ◽  
Author(s):  
Carlos A. Martinez ◽  
David N. Arnosti

ABSTRACT Transcriptional repressor proteins play key roles in the control of gene expression in development. For the Drosophila embryo, the following two functional classes of repressors have been described: short-range repressors such as Knirps that locally inhibit the activity of enhancers and long-range repressors such as Hairy that can dominantly inhibit distal elements. Several long-range repressors interact with Groucho, a conserved corepressor that is homologous to mammalian TLE proteins. Groucho interacts with histone deacetylases and histone proteins, suggesting that it may effect repression by means of chromatin modification; however, it is not known how long-range effects are mediated. Using embryo chromatin immunoprecipitation, we have analyzed a Hairy-repressible gene in the embryo during activation and repression. When inactivated, repressors, activators, and coactivators cooccupy the promoter, suggesting that repression is not accomplished by the displacement of activators or coactivators. Strikingly, the Groucho corepressor is found to be recruited to the transcribed region of the gene, contacting a region of several kilobases, concomitant with a loss of histone H3 and H4 acetylation. Groucho has been shown to form higher-order complexes in vitro; thus, our observations suggest that long-range effects may be mediated by a “spreading” mechanism, modifying chromatin over extensive regions to inhibit transcription.

2004 ◽  
Vol 24 (7) ◽  
pp. 2932-2943 ◽  
Author(s):  
Hailing Cheng ◽  
Xiaoyuan He ◽  
Claire Moore

ABSTRACT Swd2, an essential WD repeat protein in Saccharomyces cerevisiae, is a component of two very different complexes: the cleavage and polyadenylation factor CPF and the Set1 methylase, which modifies lysine 4 of histone H3 (H3-K4). It was not known if Swd2 is important for the function of either of these entities. We show here that, in extract from cells depleted of Swd2, cleavage and polyadenylation of the mRNA precursor in vitro are completely normal. However, temperature-sensitive mutations or depletion of Swd2 causes termination defects in some genes transcribed by RNA polymerase II. Overexpression of Ref2, a protein previously implicated in snoRNA 3′ end formation and Swd2 recruitment to CPF, can rescue the growth and termination defects, indicating a functional interaction between the two proteins. Some swd2 mutations also significantly decrease global H3-K4 methylation and cause other phenotypes associated with loss of this chromatin modification, such as loss of telomere silencing, hydroxyurea sensitivity, and alterations in repression of INO1 transcription. Even though the two Swd2-containing complexes are both localized to actively transcribed genes, the allele specificities of swd2 defects suggest that the functions of Swd2 in mediating RNA polymerase II termination and H3-K4 methylation are not tightly coupled.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2001 ◽  
Vol 21 (19) ◽  
pp. 6484-6494 ◽  
Author(s):  
Laurence Vandel ◽  
Estelle Nicolas ◽  
Olivier Vaute ◽  
Roger Ferreira ◽  
Slimane Ait-Si-Ali ◽  
...  

ABSTRACT The E2F transcription factor controls the cell cycle-dependent expression of many S-phase-specific genes. Transcriptional repression of these genes in G0 and at the beginning of G1by the retinoblasma protein Rb is crucial for the proper control of cell proliferation. Rb has been proposed to function, at least in part, through the recruitment of histone deacetylases. However, recent results indicate that other chromatin-modifying enzymes are likely to be involved. Here, we show that Rb also interacts with a histone methyltransferase, which specifically methylates K9 of histone H3. The results of coimmunoprecipitation experiments of endogenous or transfected proteins indicate that this histone methyltransferase is the recently described heterochromatin-associated protein Suv39H1. Interestingly, phosphorylation of Rb in vitro as well as in vivo abolished the Rb-Suv39H1 interaction. We also found that Suv39H1 and Rb cooperate to repress E2F activity and that Suv39H1 could be recruited to E2F1 through its interaction with Rb. Taken together, these data indicate that Suv39H1 is involved in transcriptional repression by Rb and suggest an unexpected link between E2F regulation and heterochromatin.


2004 ◽  
Vol 24 (6) ◽  
pp. 2364-2372 ◽  
Author(s):  
Michiel Vermeulen ◽  
Michael J. Carrozza ◽  
Edwin Lasonder ◽  
Jerry L. Workman ◽  
Colin Logie ◽  
...  

ABSTRACT The histone code is among others established via differential acetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). To unambiguously determine the histone tail specificity of HDAC-containing complexes, we have established an in vitro system consisting of nucleosomal templates reconstituted with hyperacetylated histones or recombinant histones followed by acetylation with native SAGA or NuA4. Selective targeting of the mammalian Sin3/HDAC and N-CoR/SMRT corepressor complexes by using specific chimeric repressors created a near physiological setting to assess their histone tail specificity. Recruitment of the Sin3/HDAC complex to nucleosomal templates preacetylated with SAGA or NuA4 resulted in deacetylation of histones H3 and H4, whereas recruitment of N-CoR/SMRT resulted in deacetylation of histone H3 only. These results provide solid evidence that HDAC-containing complexes display distinct, intrinsic histone tail specificities and hence may function differently to regulate chromatin structure and transcription.


2018 ◽  
Vol 115 (48) ◽  
pp. E11264-E11273 ◽  
Author(s):  
Robin Uchiyama ◽  
Kristyna Kupkova ◽  
Savera J. Shetty ◽  
Alicia S. Linford ◽  
Marilyn G. Pray-Grant ◽  
...  

Chronically undernourished children become stunted during their first 2 years and thereafter bear burdens of ill health for the rest of their lives. Contributors to stunting include poor nutrition and exposure to pathogens, and parental history may also play a role. However, the epigenetic impact of a poor environment on young children is largely unknown. Here we show the unfolding pattern of histone H3 lysine 4 trimethylation (H3K4me3) in children and mothers living in an urban slum in Dhaka, Bangladesh. A pattern of chromatin modification in blood cells of stunted children emerges over time and involves a global decrease in methylation at canonical locations near gene start sites and increased methylation at ectopic sites throughout the genome. This redistribution occurs at metabolic and immune genes and was specific for H3K4me3, as it was not observed for histone H3 lysine 27 acetylation in the same samples. Methylation changes in stunting globally resemble changes that occur in vitro in response to altered methylation capacity, suggesting that reduced levels of one-carbon nutrients in the diet play a key role in stunting in this population. A network of differentially expressed genes in stunted children reveals effects on chromatin modification machinery, including turnover of H3K4me3, as well as posttranscriptional gene regulation affecting immune response pathways and lipid metabolism. Consistent with these changes, reduced expression of the endocytic receptor gene LDL receptor 1 (LRP1) is a driver of stunting in a mouse model, suggesting a target for intervention.


2019 ◽  
Author(s):  
Jessica L. Soyer ◽  
Jonathan Grandaubert ◽  
Janine Haueisen ◽  
Klaas Schotanus ◽  
Eva H. Stukenbrock

SummaryDuring infection, pathogens secrete effectors, key elements of pathogenesis. In several phytopathogenic fungi, synchronous waves of effector genes are expressed during plant infection to manipulate and silence plant defenses. In Zymoseptoria tritici, causing septoria leaf blotch of wheat, at least two waves of effector genes are expressed, during the asymptomatic phase and at the switch to necrotrophy. The underlying factors responsible for the fine-tuned regulation of effector gene expression in this pathogen are unknown. Previously, a detailed map of the chromatin structure in vitro of Z. tritici was generated by chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) targeting histone modifications typical for euchromatin (di-methylation of the lysine 4 of the histone H3, H3K4me2) or heterochromatin (tri-methylation of the lysine 9 and 27 of the histone H3, H3K9me3 and H3K27me3). Based on the hypothesis that changes in the histone modifications contribute to the transcriptional control of pathogenicity-related genes, we tested whether different sets of genes are associated with different histone modifications in vitro. We correlated the in vitro histone maps with in planta transcriptome data and show that genes located in heterochromatic domains in vitro are highly up-regulated at the switch toward necrotrophy. We combined our integrated analyses of genomic, transcriptomic and epigenomic data with ChIP-qPCR in planta and thereby provide further evidence for the involvement of histone modifications in the transcriptional dynamic of putative pathogenicity-related genes of Z. tritici.


2019 ◽  
Author(s):  
Elizabeth T. Wiles ◽  
Kevin J. McNaught ◽  
Saumya M. De Silva ◽  
Gurmeet Kaur ◽  
Jeanne M. Selker ◽  
...  

AbstractMethylation of histone H3 lysine 27 (H3K27) is widely recognized as a transcriptionally repressive chromatin modification but the mechanism of repression remains unclear. We devised and implemented a forward genetic scheme to identify factors required for H3K27 methylation-mediated silencing in the filamentous fungus Neurospora crassa and identified a bromo-adjacent homology (BAH)-plant homeodomain (PHD)-containing protein, EPR-1 (Effector of Polycomb Repression 1; NCU07505). EPR-1 associates with H3K27 methylation in vivo and in vitro, and loss of EPR-1 de-represses H3K27-methylated genes without loss of H3K27 methylation. EPR-1 is not fungal-specific; orthologs of EPR-1 are present in a diverse array of eukaryotic lineages, suggesting an ancestral EPR-1 was a component of a primitive Polycomb repression pathway.SignificancePolycomb group (PcG) proteins are employed by a wide variety of eukaryotes for the maintenance of gene repression. Polycomb repressive complex 2 (PRC2), a multimeric complex of PcG proteins, catalyzes the methylation of histone H3 lysine 27 (H3K27). In the filamentous fungus, Neurospora crassa, H3K27 methylation represses scores of genes, despite the absence of canonical H3K27 methylation effectors that are present in plants and animals. We report the identification and characterization of an H3K27 methylation effector, EPR-1, in N. crassa and demonstrate its widespread presence and early eukaryotic origins with phylogenetic analyses. These findings indicate that an ancient EPR-1 may have been part of a nascent Polycomb repression system in eukaryotes.


2001 ◽  
Vol 21 (23) ◽  
pp. 7913-7922 ◽  
Author(s):  
Matthew C. Lorincz ◽  
Dirk Schübeler ◽  
Mark Groudine

ABSTRACT The majority of 5-methylcytosine in mammalian DNA resides in endogenous transposable elements and is associated with the transcriptional silencing of these parasitic elements. Methylation also plays an important role in the silencing of exogenous retroviruses. One of the difficulties inherent in the study of proviral silencing is that the sites in which proviruses randomly integrate influence the probability of de novo methylation and expression. In order to compare methylated and unmethylated proviruses at the same genomic site, we used a recombinase-based targeting approach to introduce an in vitro methylated or unmethylated Moloney murine leukemia-based provirus in MEL cells. The methylated and unmethylated states are maintained in vivo, with the exception of the initially methylated proviral enhancer, which becomes demethylated in vivo. Although the enhancer is unmethylated and remodeled, the methylated provirus is transcriptionally silent. To further analyze the repressed state, histone acetylation status was determined by chromatin immunoprecipitation (ChIP) analyses, which revealed that localized histone H3 but not histone H4 hyperacetylation is inversely correlated with proviral methylation density. Since members of the methyl-CpG binding domain (MBD) family of proteins recruit histone deacetylase activity, these proteins may play a role in proviral repression. Interestingly, only MBD3 and MeCP2 are expressed in MEL cells. ChIPs with antibodies specific for these proteins revealed that only MeCP2 associates with the provirus in a methylation-dependent manner. Taken together, our results suggest that MeCP2 recruitment to a methylated provirus is sufficient for transcriptional silencing, despite the presence of a remodeled enhancer.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Mehdi Ouaïssi ◽  
Urs Giger ◽  
Igor Sielezneff ◽  
Nicolas Pirrò ◽  
Bernard Sastre ◽  
...  

There is ongoing interest to identify signaling pathways and genes that play a key role in carcinogenesis and the development of resistance to antitumoral drugs. Given that histone deacetylases (HDACs) interact with various partners through complex molecular mechanims leading to the control of gene expression, they have captured the attention of a large number of researchers. As a family of transcriptional corepressors, they have emerged as important regulators of cell differentiation, cell cycle progression, and apoptosis. Several HDAC inhibitors (HDACis) have been shown to efficiently protect against the growth of tumor cellsin vitroas well asin vivo. The pancreatic cancer which represents one of the most aggressive cancer still suffers from inefficient therapy. Recent data, although usingin vitrotumor cell cultures andin vivochimeric mouse model, have shown that some of the HDACi do express antipancreatic tumor activity. This provides hope that some of the HDACi could be potential efficient anti-pancreatic cancer drugs. The purpose of this review is to analyze some of the current data of HDACi as possible targets of drug development and to provide some insight into the current problems with pancreatic cancer and points of interest for further study of HDACi as potential molecules for pancreatic cancer adjuvant therapy.


2017 ◽  
Author(s):  
Jian Yan ◽  
Shi-An A Chen ◽  
Andrea Local ◽  
Tristin Liu ◽  
Yunjiang Qiu ◽  
...  

SUMMARYRegulation of gene expression in mammalian cells depends on long-range chromatin interactions between enhancers and promoters. Currently, the exact mechanisms that connect distal enhancers to their specific target promoters remain to be fully elucidated. Here we show that the histone H3 Lysine 4 monomethylation (H3K4me1) writer proteins MLL3 and MLL4 (MLL3/4) play an active role in this process. We demonstrate that in differentiating mouse embryonic stem cells, MLL3/4-dependent deposition of H3K4me1 at enhancers correlates with increased levels of chromatin interactions, whereas loss of MLL3/4 leads to greatly reduced frequencies of chromatin interactions and failure of lineage-specific gene expression programs. We further show that H3K4me1 facilitates recruitment of the Cohesin complex to chromatin in vitro and in vivo, providing a potential mechanism for MLL3/4 to promote chromatin looping. Taken together, our results support an active role for MLL3/4 in modulating chromatin organization at enhancers in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document