scholarly journals Pax6 Regulates the Proglucagon Processing Enzyme PC2 and Its Chaperone 7B2

2009 ◽  
Vol 29 (8) ◽  
pp. 2322-2334 ◽  
Author(s):  
Liora S. Katz ◽  
Yvan Gosmain ◽  
Eric Marthinet ◽  
Jacques Philippe

ABSTRACT Pax6 is important in the development of the pancreas and was previously shown to regulate pancreatic endocrine differentiation, as well as the insulin, glucagon, and somatostatin genes. Prohormone convertase 2 (PC2) is the main processing enzyme in pancreatic α cells, where it processes proglucagon to produce glucagon under the spatial and temporal control of 7B2, which functions as a molecular chaperone. To investigate the role of Pax6 in glucagon biosynthesis, we studied potential target genes in InR1G9 α cells transfected with Pax6 small interfering RNA and in InR1G9 clones expressing a dominant-negative form of Pax6. We now report that Pax6 controls the expression of the PC2 and 7B2 genes. By binding and transactivation studies, we found that Pax6 indirectly regulates PC2 gene transcription through cMaf and Beta2/NeuroD1 while it activates the 7B2 gene both directly and indirectly through the same transcription factors, cMaf and Beta2/NeuroD1. We conclude that Pax6 is critical for glucagon biosynthesis and processing by directly and indirectly activating the glucagon gene through cMaf and Beta2/NeuroD1, as well as the PC2 and 7B2 genes.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3585-3585
Author(s):  
Norihiko Kawamata ◽  
Fabienne Isken ◽  
Stefanie Goellner ◽  
C. Müller-Tidow ◽  
H. Phillip Koeffler

Abstract PAX5 is a transcriptional factor playing an important role in B-cell development. Overexpression of PAX5 induced by translocation to the enhancer region of immunoglobulin heavy chain gene occurs in non-Hodgkin lymphomas (NHL), suggesting that PAX5 can be also associated with development of NHL. To identify genes associated with tumorigenesis in malignancies overexpressing PAX5, we performed ChIP-on-chip analysis using PAX5 specific antibody. Non-specifically immunoprecipitated DNA by antibodies can cause false positive results using ChIP-on-chip analysis (background). To reduce the background in ChIP-on chip analysis, we used a dominant negative form of PAX5 and a wild-type PAX5 specific antibody for our ChIP-on-chip analysis. We have previously found a PAX5 chimeric protein expressed in acute lymphoblastic leukemia in which the C-terminal end of PAX5 was replaced by C20ORF112 protein (Kawamata N et al, Proc Natl Acad Sci U S A. Aug. 12, 2008). We have also found that this chimeric protein behaved in a dominant negative fashion over the wild-type PAX5 and suppressed expression of target genes of wild-type PAX5. PAX5 chimeric protein can compete with wild-type PAX5 for binding on the promoter region of direct down-stream target genes. To identify the genes directly regulated by PAX5 in human B-cells, we transfected the dominant-negative form of PAX5 chmeric protein, PAX5-C20ORF112 (PAX5-C20S) into NALM6 human B-cell leukemia cells which constitutively express abundant PAX5. Transfected cells were collected and chromatin immunoprecipitation (ChIP) assay was performed using PAX5 C-terminal specific antibody which can recognize only wild-type PAX5, but not the chimeric PAX5 protein, PAX5C20S. As a control, we also performed ChIP assay using NALM6 cells transfected with an empty vector. Immunoprecipitated DNA was recovered and amplified using the whole genome amplification technique. The DNAs were hybridized with oligonucleotide probes containing the promoter regions of the human genome. The levels of hybridized DNA were quantified and genes directly bound by PAX5 were identified. Comparison between NALM6 cells transfected with the empty vector and PAX5C20S significantly reduced the background and allowed identification of genes directly regulated by PAX5 in NALM6, including BUB1B, SSSCA1, CEP68, and BAG1. BUB1B, CEP68 and SSSCA1 are proteins involved in mitosis; BAG1 is a protein associated with apoptosis. Dysregulation of these genes by overexpressed PAX5 may be associated with development of B-cell malignancies.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 810-810
Author(s):  
Holly Martin ◽  
Peilin Ma ◽  
Anindya Chatterjee ◽  
Baskar Ramdas ◽  
Emily Sims ◽  
...  

Abstract Abstract 810 Gain-of-function mutations in the KIT receptor tyrosine kinase have been associated with highly malignant human neoplasms. In particular, an acquired somatic mutation at codon 816 in KIT involving an aspartic acid to valine substitution is found in ∼90% of patients with systemic mastocytosis (SM) and in ∼40% of core binding factor acute myeloid leukemia (AML). The presence of this mutation in SM and AML is associated with poor prognosis and overall survival. In mice, presence of this mutation is sufficient to recapitulate many cardinal features of human SM. This mutation changes the conformation of KIT receptor resulting in altered substrate recognition and constitutive tyrosine autophosphorylation leading to constitutive ligand independent growth, which is resistant to imatinib and shows little therapeutic efficacy in response to Dasatinib in most SM patients. As there are currently no efficacious therapeutic agents against this mutation, we sought to define novel therapeutic targets that contribute to aberrant signaling downstream from KITD816V that promote transformation of primary hematopoietic stem/progenitor cells (HSC/Ps) in diseases such as AML and SM. Previously, we and others have demonstrated that the regulatory subunit of PI3K, p85α, is required for KITD814V (murine homolog) induced transformation. Although difficult to target, we hypothesized that perhaps the downstream effectors of the PI3K signaling pathway, in particular p21 activated kinase (PAK1) and its upstream effectors including guanine exchange factors (GEF) such as Tiam1, Trio and Vav as well as the Rho family of GTPases (Rac) contribute to gain-of-function mutant-mediated transformation. We show that KITD814V (mouse) and KITD816V (human) bearing leukemic cells exhibit constitutive activation of PAK, Rac GTPases, and GEF Vav. Importantly, treatment of KITD814V bearing murine cells or mastocytosis patient derived cells bearing the KITD816V mutation with an allosteric inhibitor of PAK1 (i.e. IPA-3) results in significant inhibition in growth due to enhanced apoptosis. Consistently, expression of a dominant negative form of PAK1 (K299R) in KITD814V bearing cells profoundly inhibited their growth but not the growth of normal cells. Upstream of PAK, we show that suppression of Rac GTPases by expression of a dominant negative form of Rac (RacN17) abrogates activating KIT-induced hyperproliferation, and activity of downstream effector, PAK1. Although both Rac1 and Rac2 are activated due to the presence of KITD814V in primary HSC/Ps; loss of Rac1 only modestly corrects the growth of KITD814V bearing cells and loss of Rac2 contributes to only 50% correction. In contrast, loss of both Rac1 and Rac2 in HSC/Ps resulted in 75% correction in KITD814V induced ligand independent growth in vitro. In vivo, Rac repression significantly delayed the onset of KITD814V induced myeloproliferative neoplasms (MPN). Although, all KITD814V bearing mice died around 20 days of transplantation due to splenomegaly, increased white cell counts and massive lung infiltration by leukemic cells; KITD814V bearing mice in which Rac was repressed showed prolonged survival, significantly reducted spleen size, white cell counts and myeloid cell infiltration in the lungs. Prior studies have shown that Rac GTPases can be activated by GEFs such as Tiam1, Trio and Vav. To assess the specific role of these GEFs in KITD814V induced transformation, we utilized small molecule inhibitors that uniquely target different GEFs. We synthesized and utilized a novel inhibitor of Rac, EHop-016, which is based on the structure of an existing GEF inhibitor, NSC23766. While NSC23766 targets Tiam1 and Trio, EHop-016 targets Vav. The IC50 of EHop-016 is ∼50 fold lower than that of NSC23766. Using these two drugs, we demonstrate that EHop-016 is 50-fold more potent in inhibiting the growth of both murine and human patient derived leukemic cells compared to NSC23766. These observations were confirmed utilizing mice and bone marrow cells deficient in the expression of Vav1 engineered to express the KITD814V mutation. Taken together, a series of experiments using knockout mouse models, mouse models of MPN, dominant negative approaches, and a novel allosteric inhibitor of PAK1 and a novel small molecule inhibitor of GEF Vav provide a mechanism of KITD816V induced transformation and provide potential novel therapeutic targets for treating oncogenic KIT bearing neoplasms. Disclosures: No relevant conflicts of interest to declare.


2015 ◽  
Vol 308 (10) ◽  
pp. L1014-L1024 ◽  
Author(s):  
BreAnne MacKenzie ◽  
Ingrid Henneke ◽  
Stefanie Hezel ◽  
Denise Al Alam ◽  
Elie El Agha ◽  
...  

Fibroblast growth factors (Fgfs) mediate organ repair. Lung epithelial cell overexpression of Fgf10 postbleomycin injury is both protective and therapeutic, characterized by increased survival and attenuated fibrosis. Exogenous administration of FGF7 (palifermin) also showed prophylactic survival benefits in mice. The role of endogenous Fgfr2b ligands on bleomycin-induced lung fibrosis is still elusive. This study reports the expression of endogenous Fgfr2b ligands, receptors, and signaling targets in wild-type mice following bleomycin lung injury. In addition, the impact of attenuating endogenous Fgfr2b-ligands following bleomycin-induced fibrosis was tested by using a doxycycline (dox)-based inducible, soluble, dominant-negative form of the Fgfr2b receptor. Double-transgenic (DTG) Rosa26rtTA/+;tet(O)solFgfr2b mice were validated for the expression and activity of soluble Fgfr2b (failure to regenerate maxillary incisors, attenuated recombinant FGF7 signal in the lung). As previously reported, no defects in lung morphometry were detected in DTG (+dox) mice exposed from postnatal days (PN) 1 through PN105. Female single-transgenic (STG) and DTG mice were subjected to various levels of bleomycin injury (1.0, 2.0, and 3.0 U/kg). Fgfr2b ligands were attenuated either throughout injury ( days 0– 11; days 0– 28) or during later stages ( days 6– 28 and 14– 28). No significant changes in survival, weight, lung function, confluent areas of fibrosis, or hydroxyproline deposition were detected in DTG mice. These results indicate that endogenous Fgfr2b ligands do not significantly protect against bleomycin injury, nor do they expedite the resolution of bleomycin-induced lung injury in mice.


2019 ◽  
Author(s):  
Junyan Tao ◽  
Shu Zhang ◽  
Jie Zhang ◽  
Katja Evert ◽  
Xiaolei Li ◽  
...  

Abstract Backgrounds: Hepatoblastoma (HB) is the most common pediatric liver tumor. Though Wnt/β-catenin and Hippo cascades are implicated in HB development, there is no study on the crosstalk of β-catenin and Hippo downstream effector TAZ in HB. Methods: The expression of TAZ and of β-catenin in human HB specimens was assessed by immunohistochemistry (IHC). The functional interplay between TAZ and β-catenin was tested through delivering either an activated form of TAZ (TAZS89A) alone or co-delivering TAZS89A and an activated form of β-catenin (∆N90-β-catenin) to mouse liver using sleeping beauty transposase via hydrodynamic tail vein injection (SBT-HTVI). In addition, the role of transcriptional enhanced associate domain (TEAD) factors, canonical Notch cascade, Yap, and the tumor modifier heat shock transcription factor 1 (HSF1) along TAZ/β-catenin-driven HB development was studied in vivo and vitro. Results: Activation of TAZ often co-occurred with that of β-catenin in clinical specimens. While overexpression of TAZS89A alone was unable to promote liver tumorigenesis, the concomitant overexpression of TAZ and ∆N90-β-catenin induced the development of HB lesions exhibiting both epithelial and mesenchymal features. Mechanistically, HB development driven by TAZ/β-catenin required TAZ interaction with TEAD factors. Furthermore, TAZ/β-catenin overexpression induced HB development in conditional Yes-associated protein knockout (Yap KO) mice, indicating that Yap activation is dispensable in this model. Activation of the Notch signaling was observed in TAZ/β-catenin mouse lesions, consistent with that reported in human HBs. Blocking of the canonical Notch cascade using the dominant negative form of RBP-J (dnRBP-J) did not inhibit TAZ/β-catenin dependent HB formation in mice, although suppressed the mesenchymal differentiation. Similarly, upregulation of HSF1 was detected in TAZ/β-catenin lesions, but its inactivation did not affect HB development. In human HB cell lines, silencing of TAZ resulted in decreased cell growth, which was reduced more substantially when TAZ knockdown was associated with suppression of either β-catenin or YAP gene. Conclusions: Overall, our study identifies TAZ as a critical oncogene in HB development and progression. Yap, Notch, and HSF1 are dispensable for TAZ/β-catenin induced HB development in mice.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1145-1145
Author(s):  
Ramesh C Nayak ◽  
Shiva Keshava ◽  
Usha Pendurthi ◽  
L. Vijaya Mohan Rao

Abstract Abstract 1145 Recent studies from our laboratory and others showed that endothelial cell protein C receptor (EPCR), the cellular receptor for protein C and activated protein C (APC), also serves as a receptor for factor VII (FVII) and activated factor VII (FVIIa). At present, the physiological importance of FVII/FVIIa binding to EPCR is largely unknown, but this interaction may play a role in the clearance or transport of FVII/FVIIa from circulation to tissues. Our recent studies showed that FVIIa (or APC) binding to EPCR promoted the endocytosis of EPCR via dynamin and caveolar-dependent pathways, and the endocytosed receptor-ligand complexes were accumulated in the recycling compartment (REC) before being targeted back to the cell surface (Blood 2009;114:1974-1986). Rab GTPases (Rab 4, Rab 5, Rab 7 and Rab 11 etc.), which localize to specific endosomal structures, have been shown to play crucial roles in the endocytic and exocytic pathways of receptor or receptor/ligand complexes. The role of these Ras-like small GTPases is unknown in endocytosis and trafficking of EPCR and EPCR/FVIIa complexes. The present study was undertaken in order to investigate the role of different Rab GTPases (Rab 4A, Rab 5 and Rab11) in the intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. For this, we examined the effect of expressing wild-type (wt) or mutant Rab proteins on the intracellular distribution of FVIIa in human umbilical vein endothelial cells (HUVEC). The wild-type, constitutively active and dominant negative mutants of Rab 4A, Rab 5 and Rab 11 were cloned in adenoviral shuttle vector pacAd5 K-N pA CMV and the recombinant adenoviruses expressing these Rab GTPase variants were generated in human embryonic kidney (HEK) cells. HUVEC were infected with recombinant adenoviruses encoding for the wild-type, active or dominant negative mutant of Rab 4A, Rab 5 and Rab 11 (25 moi/cell). After culturing the cells for 24 h, they were incubated with recombinant FVIIa conjugated with Alexa fluor 488 fluorescent dye (AF488-FVIIa) for 1 h at 37°C. The intracellular distribution of FVIIa was analyzed by monitoring the fluorescence of AF488-FVIIa by confocal microscopy. The intracellular distribution of EPCR and Rab proteins was evaluated by confocal microscopy after immunofluorescence staining. Expression of Rab 4A wt or constitutively active Rab 4A (Q67L) forms led to accumulation of AF488-FVIIa within the Rab 4A positive early/sorting endosomes, whereas FVIIa accumulation in the REC was inhibited. In cells expressing Rab 4A dominant negative form (S22N), FVIIa was trafficked normally and accumulated in the REC. Rab 4A is known to regulate fusion of early and sorting endosomes, as well as recycling of the internalized receptor or receptor/ligand complexes from early/sorting endosomes back to the cell surface. Increased accumulation of FVIIa in early/sorting endosomes but a decrease in REC in HUVEC transduced to express wt and constitutively active Rab 4A, suggests that Rab 4A plays a role in the transport of internalized FVIIa and FVIIa-EPCR complexes from sorting endosomes back to the cell surface. HUVEC expressing Rab 5 wt or active mutant (Q79L) showed larger endosomal structures beneath the plasma membrane where EPCR and FVIIa were accumulated; very little FVIIa entered the REC. The trafficking of internalized FVIIa remained unaffected in HUVEC expressing Rab 5A dominant negative form (S34N). As Rab 5 is known to induce receptor internalization and fusion between early endosomes, the large endosomal structures containing AF488-FVIIa found in HUVEC expressing wt or constitutively active form but not in cells expressing the dominant negative form suggests that Rab 5 facilitates internalization of FVIIa-EPCR complexes. In contrast to the data obtained in HUVEC expressing Rab 4A and Rab 5, the intracellular trafficking of AF488-FVIIa remained unaffected in HUVEC expressing either wt or constitutively active Rab 11 mutant. Rab 11 dominant negative mutant (S34N) prevented the entry of AF488-FVIIa into REC. The observation that the dominant negative form of Rab 11 inhibits the entry of internalized FVIIa to the REC indicates that the activation of Rab 11 by GTP is required for the transport of FVIIa from sorting endosomes toward the recycling compartment. Overall our present data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR and internalized FVIIa in endothelial cells. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 20 (23) ◽  
pp. 8684-8695 ◽  
Author(s):  
Kuo-I Lin ◽  
Yi Lin ◽  
Kathryn Calame

ABSTRACT The importance of c-myc as a target of the Blimp-1 repressor has been studied in BCL-1 cells, in which Blimp-1 is sufficient to trigger terminal B-cell differentiation. Our data show that Blimp-1-dependent repression of c-myc is required for BCL-1 differentiation, since constitutive expression of c-Myc blocked differentiation. Furthermore, ectopic expression of cyclin E mimicked the effects of c-Myc on both proliferation and differentiation, indicating that the ability of c-Myc to drive proliferation is responsible for blocking BCL-1 differentiation. However, inhibition of c-Myc by a dominant negative form was not sufficient to drive BCL-1 differentiation. Thus, during Blimp-1-dependent plasma cell differentiation, repression of c-myc is necessary but not sufficient, demonstrating the existence of additional Blimp-1 target genes.


1997 ◽  
Vol 17 (6) ◽  
pp. 3364-3372 ◽  
Author(s):  
R Jaster ◽  
Y Zhu ◽  
M Pless ◽  
S Bhattacharya ◽  
B Mathey-Prevot ◽  
...  

Cytokine receptors activate multiple signal transduction pathways, resulting in the induction of specific target genes. We have recently identified a hematopoietic cell-specific immediate-early gene, DUB-1, that encodes a growth-regulatory deubiquitinating enzyme. The DUB-1 gene contains a 112-bp enhancer element that is specifically induced by the beta c subunit of the interleukin-3 (IL-3) receptor. To investigate the mechanism of DUB-1 induction, we examined the effects of dominant-negative forms of JAK kinases, STAT transcription factors, and Raf-1 in transient transfection assays. In Ba/F3 cells, IL-3 induced a dose-dependent activation of DUB-1-luciferase (luc) and GAS-luc reporter constructs. A dominant-negative form of JAK2 (truncated at amino acid 829) inhibited the induction of DUB-1-luc and GAS-luc by IL-3. A dominant-negative form of STAT5 (truncated at amino acid 650) inhibited the induction of GAS-luc but not DUB-1-luc. A dominant-negative form of Raf-1 inhibited the induction of DUB-1-luc but had no effect on the induction of GAS-luc by IL-3. The requirement for JAK2 in the stimulation of the DUB-1 enhancer was further supported by the suppression of DUB-1 induction in Ba/F3 cells stably expressing the dominant-negative JAK2 polypeptide. We hypothesize that IL-3 activates a JAK2/Raf-1 signaling pathway that is required for DUB-1 induction and is independent of STAT5.


Sign in / Sign up

Export Citation Format

Share Document