scholarly journals Functional domains of wild-type and mutant p53 proteins involved in transcriptional regulation, transdominant inhibition, and transformation suppression.

1993 ◽  
Vol 13 (9) ◽  
pp. 5186-5194 ◽  
Author(s):  
T Unger ◽  
J A Mietz ◽  
M Scheffner ◽  
C L Yee ◽  
P M Howley

The wild-type (wt) p53 protein has transcriptional activation functions which may be linked to its tumor suppressor activity. Many mutant p53 proteins expressed in cancers have lost the ability to function as transcriptional activators and furthermore may inhibit wt p53 function. To study the mechanisms by which mutant forms of p53 have lost their transactivation function and can act in a dominant negative manner, a structure-function analysis of both mutant and engineered truncated forms of p53 was carried out. We show that different mutant p53 proteins found in cancers vary in the ability to inhibit the transcriptional transactivation and specific DNA binding activities of wt human p53. This transdominant effect was mediated through the carboxy-terminal oligomerization region. The role of the transactivation activity in transformation suppression by wt p53 was also examined by constructing an N-terminal deletion mutant lacking the transactivation domain. This mutant was unable to transactivate but could bind specifically to DNA. Although it was impaired in its ability to suppress transformation of primary rat embryo fibroblasts by adenovirus E1A plus activated ras, the N-terminal deletion mutant still had some suppression activity, suggesting that additional functions of p53 may contribute to transformation suppression.

1993 ◽  
Vol 13 (9) ◽  
pp. 5186-5194
Author(s):  
T Unger ◽  
J A Mietz ◽  
M Scheffner ◽  
C L Yee ◽  
P M Howley

The wild-type (wt) p53 protein has transcriptional activation functions which may be linked to its tumor suppressor activity. Many mutant p53 proteins expressed in cancers have lost the ability to function as transcriptional activators and furthermore may inhibit wt p53 function. To study the mechanisms by which mutant forms of p53 have lost their transactivation function and can act in a dominant negative manner, a structure-function analysis of both mutant and engineered truncated forms of p53 was carried out. We show that different mutant p53 proteins found in cancers vary in the ability to inhibit the transcriptional transactivation and specific DNA binding activities of wt human p53. This transdominant effect was mediated through the carboxy-terminal oligomerization region. The role of the transactivation activity in transformation suppression by wt p53 was also examined by constructing an N-terminal deletion mutant lacking the transactivation domain. This mutant was unable to transactivate but could bind specifically to DNA. Although it was impaired in its ability to suppress transformation of primary rat embryo fibroblasts by adenovirus E1A plus activated ras, the N-terminal deletion mutant still had some suppression activity, suggesting that additional functions of p53 may contribute to transformation suppression.


2020 ◽  
Vol 72 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Tomasz Gębarowski ◽  
Benita Wiatrak ◽  
Katarzyna Gębczak ◽  
Beata Tylińska ◽  
Kazimierz Gąsiorowski

Abstract Background The p53 protein is a transcription factor for many genes, including genes involved in inhibiting cell proliferation and inducing apoptosis in genotoxically damaged and tumor-transformed cells. In more than 55% of cases of human cancers, loss of the essential function of p53 protein is found. In numerous reports, it has been shown that small molecules (chemical compounds) can restore the suppressor function of the mutant p53 protein in tumor cells. The aim of this study was to evaluate the potential anticancer activity of three newly synthesized olivacine derivatives. Methods The study was performed using two cell lines—CCRF/CEM (containing the mutant p53 protein) and A549 (containing a non-mutant, wild-type p53 protein). The cells were incubated with olivacine derivatives for 18 h and then assays were carried out: measurement of the amount of p53 and p21 proteins, detection of apoptosis, cell cycle analysis, and rhodamine 123 accumulation assay (evaluation of P-glycoprotein inhibition). Multiple-criteria decision analysis was used to compare the anticancer activity of the tested compounds. Results Each tested compound caused the reconstitution of suppressor activity of the p53 protein in cells with the mutant protein. In addition, one of the compounds showed significant antitumor activity in both wild-type and mutant cells. For all compounds, a stronger effect on the level of the p53 protein was observed than for the reference compound—ellipticine. Conclusions The observed effects of the tested new olivacine derivatives (pyridocarbazoles) suggest that they are good candidates for new anticancer drugs.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3589-3589
Author(s):  
Brandon James Aubrey ◽  
Andreas Strasser ◽  
Gemma Kelly ◽  
Lin Tai ◽  
Marco Herold

Abstract Deregulated c-MYC expression and mutations in p53 are among the most common changes detected in human cancer. It is now established that mutant p53 proteins confer a poor prognosis in human cancer through both loss of wild-type p53 activity as well as various proposed gain-of-function properties. The specific role of mutant p53 in MYC-driven tumorigenesis is not known. The Eμ-Myc mouse model carries a c-Myc transgene under the control of the immunoglobulin heavy chain gene enhancer (Eμ), recapitulating the chromosomal translocation underlying human Burkitt Lymphoma (BL). These mice develop aggressive pre-B or B cell lymphomas and ~20% of those tumours exhibit p53 mutations. We have shown that MYC-driven lymphomas are exquisitely dependent on the pro-survival BCL-2 family member MCL-1 such that loss of a single allele of Mcl-1 leads to dramatic tumour regression and prolonged animal survival. Interestingly, we found that this dependency on MCL-1 is reduced, but not completely ablated, by the presence of a p53 mutation. This suggests an important role for mutant p53 in the sustained survival of MYC-driven lymphomas. We are investigating the effects of five different mutant mouse p53 proteins (V170M, I192S, G280, R246Q, R270H) on tumour initiation, sustained growth and chemoresistance in the Eμ-Myc mouse model. We are further examining the effect of p53 mutations on MCL-1 dependence by using a floxed Mcl-1 gene and a tamoxifen-inducible Cre-recombinase in established Eμ-Myc lymphomas. Preliminary data suggest that both loss of wild-type p53 function as well as retroviral over-expression of mutant p53 can compensate for reduced levels of MCL-1 (loss of one Mcl-1 allele). The underlying mechanisms for this are under investigation. The role of mutant p53 in lymphoma cell survival has been further examined in Eμ-Myc lymphoma-derived cell lines. Enforced over-expression of mutant p53 in cell lines containing wild-type p53 impaired induction of apoptosis by Nutlin3A, an inhibitor of Mdm-2 (the major negative regulator of p53). Remarkably, Nutlin-3a-induced apoptosis was impaired although it caused substantial transcriptional induction of the p53 apoptosis effectors, Puma and Noxa. Importantly, different mutant p53 proteins conferred different levels of protection against cell death. The observed protection against cell death may be partly due to dominant-negative effects of mutant p53, however, it does not appear to be robust enough to account for the extent of cell survival. Furthermore, mutant p53 conferred resistance to docetaxol, which is thought to induce cell death through predominantly p53-independent mechanisms. These data suggest that mutant p53 can protect against both p53-dependent and p53-independent cell death processes. Conversely, transcriptional induction of Noxa and Puma implies that “p53-restoration therapy” may remain a feasible treatment strategy even in tumours that bear mutations in p53 and that the role of a dominant-negative effect for some mutant p53 proteins may be less important than previously considered, at least in lymphoma cells. We are also examining the effect of mutant p53 on lymphoma development utilizing a hematopoietic reconstitution model and retroviral over-expression of mutant p53 proteins. The different mutant p53 proteins investigated exhibited distinct effects during tumorigenesis. The R246Q mutant p53 protein markedly accelerated lymphoma development in the context of MYC over-expression. The R246Q mutant p53 protein demonstrated strong selection in p53-deficient (p53-/-) hematopoietic cells during reconstitution indicative of an advantageous activity in emergency hematopoiesis. Overall, these findings provide evidence for a positive oncogenic role of mutant p53 in hematopoietic cells that provides a particularly potent selective advantage in the context of MYC driven lymphoma development. Importantly, different p53 mutations exhibit different functional properties such that different p53 mutations are likely to be associated with distinct risk in human malignant disease. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
1999 ◽  
Vol 93 (12) ◽  
pp. 4154-4166 ◽  
Author(s):  
Robert L. Ilaria ◽  
Robert G. Hawley ◽  
Richard A. Van Etten

Abstract STAT5 is a member of the signal transducers and activation of transcription (STAT) family of latent transcription factors activated in a variety of cytokine signaling pathways. We introduced alanine substitution mutations in highly conserved regions of murine STAT5A and studied the mutants for dimerization, DNA binding, transactivation, and dominant negative effects on erythropoietin-induced STAT5-dependent transcriptional activation. The mutations included two near the amino-terminus (W255KR→AAA and R290QQ→AAA), two in the DNA-binding domain (E437E→AA and V466VV→AAA), and a carboxy-terminal truncation of STAT5A (STAT5A/▵53C) analogous to a naturally occurring isoform of rat STAT5B. All of the STAT mutant proteins were tyrosine phosphorylated by JAK2 and heterodimerized with STAT5B except for the WKR mutant, suggesting an important role for this region in STAT5 for stabilizing dimerization. The WKR, EE, and VVV mutants had no detectable DNA-binding activity, and the WKR and VVV mutants, but not EE, were defective in transcriptional induction. The VVV mutant had a moderate dominant negative effect on erythropoietin-induced STAT5 transcriptional activation, which was likely due to the formation of heterodimers that are defective in DNA binding. Interestingly, the WKR mutant had a potent dominant negative effect, comparable to the transactivation domain deletion mutant, ▵53C. Stable expression of either the WKR or ▵53C STAT5 mutants in the murine myeloid cytokine-dependent cell line 32D inhibited both interleukin-3–dependent proliferation and granulocyte colony-stimulating factor (G-CSF)–dependent differentiation, without induction of apoptosis. Expression of these mutants in primary murine bone marrow inhibited G-CSF–dependent granulocyte colony formation in vitro. These results demonstrate that mutations in distinct regions of STAT5 exert dominant negative effects on cytokine signaling, likely through different mechanisms, and suggest a role for STAT5 in proliferation and differentiation of myeloid cells.


1992 ◽  
Vol 12 (3) ◽  
pp. 1357-1365
Author(s):  
J M Nigro ◽  
R Sikorski ◽  
S I Reed ◽  
B Vogelstein

Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Rebecca Elston ◽  
Gareth J. Inman

Wild-type p53 and TGF-β are key tumour suppressors which regulate an array of cellular responses. TGF-β signals in part via the Smad signal transduction pathway. Wild-type p53 and Smads physically interact and coordinately induce transcription of a number of key tumour suppressive genes. Conversely mutant p53 generally subverts tumour suppressive TGF-β responses, diminishing transcriptional activation of key TGF-β target genes. Mutant p53 can also interact with Smads and this enables complex formation with the p53 family member p63 and blocks p63-mediated activation of metastasis suppressing genes to promote tumour progression. p53 and Smad function may also overlap during miRNA biogenesis as they can interact with the same components of the Drosha miRNA processing complex to promote maturation of specific subsets of miRNAs. This paper investigates the crosstalk between p53 and TGF-β signalling and the potential roles this plays in cancer biology.


1993 ◽  
Vol 13 (1) ◽  
pp. 301-306 ◽  
Author(s):  
C A Finlay

Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.


Blood ◽  
2018 ◽  
Vol 131 (25) ◽  
pp. 2789-2802 ◽  
Author(s):  
Alexander Jethwa ◽  
Mikołaj Słabicki ◽  
Jennifer Hüllein ◽  
Marius Jentzsch ◽  
Vineet Dalal ◽  
...  

Key Points The HAT complex member TRRAP is vital for maintaining high p53 levels by shielding it against the natural p53 degradation machinery. Acetylation-modifying complexes regulate p53 protein stability, which may provide a basis for therapeutic targeting of mutant p53.


1992 ◽  
Vol 12 (12) ◽  
pp. 5581-5592 ◽  
Author(s):  
E Shaulian ◽  
A Zauberman ◽  
D Ginsberg ◽  
M Oren

Mutations in the p53 gene are most frequent in cancer. Many p53 mutants possess transforming activity in vitro. In cells transformed by such mutants, the mutant protein is oligomerized with endogenous cell p53. To determine the relevance of oligomerization for transformation, miniproteins containing C-terminal portions of p53 were generated. These miniproteins, although carrying no point mutation, transformed at least as efficiently as full-length mutant p53. Transforming activity was coupled with the ability to oligomerize with wild-type p53, as well as with the ability to abrogate sequence-specific DNA binding by coexpressed wild-type p53. These findings suggest that p53-mediated transformation may operate through a dominant negative mechanism, involving the generation of DNA binding-incompetent oligomers.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


Sign in / Sign up

Export Citation Format

Share Document