Evidence for Mutant p53 Gain-of-Function Effects in Normal Haemopoietic Cells and Myc-Driven Lymphoma

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3589-3589
Author(s):  
Brandon James Aubrey ◽  
Andreas Strasser ◽  
Gemma Kelly ◽  
Lin Tai ◽  
Marco Herold

Abstract Deregulated c-MYC expression and mutations in p53 are among the most common changes detected in human cancer. It is now established that mutant p53 proteins confer a poor prognosis in human cancer through both loss of wild-type p53 activity as well as various proposed gain-of-function properties. The specific role of mutant p53 in MYC-driven tumorigenesis is not known. The Eμ-Myc mouse model carries a c-Myc transgene under the control of the immunoglobulin heavy chain gene enhancer (Eμ), recapitulating the chromosomal translocation underlying human Burkitt Lymphoma (BL). These mice develop aggressive pre-B or B cell lymphomas and ~20% of those tumours exhibit p53 mutations. We have shown that MYC-driven lymphomas are exquisitely dependent on the pro-survival BCL-2 family member MCL-1 such that loss of a single allele of Mcl-1 leads to dramatic tumour regression and prolonged animal survival. Interestingly, we found that this dependency on MCL-1 is reduced, but not completely ablated, by the presence of a p53 mutation. This suggests an important role for mutant p53 in the sustained survival of MYC-driven lymphomas. We are investigating the effects of five different mutant mouse p53 proteins (V170M, I192S, G280, R246Q, R270H) on tumour initiation, sustained growth and chemoresistance in the Eμ-Myc mouse model. We are further examining the effect of p53 mutations on MCL-1 dependence by using a floxed Mcl-1 gene and a tamoxifen-inducible Cre-recombinase in established Eμ-Myc lymphomas. Preliminary data suggest that both loss of wild-type p53 function as well as retroviral over-expression of mutant p53 can compensate for reduced levels of MCL-1 (loss of one Mcl-1 allele). The underlying mechanisms for this are under investigation. The role of mutant p53 in lymphoma cell survival has been further examined in Eμ-Myc lymphoma-derived cell lines. Enforced over-expression of mutant p53 in cell lines containing wild-type p53 impaired induction of apoptosis by Nutlin3A, an inhibitor of Mdm-2 (the major negative regulator of p53). Remarkably, Nutlin-3a-induced apoptosis was impaired although it caused substantial transcriptional induction of the p53 apoptosis effectors, Puma and Noxa. Importantly, different mutant p53 proteins conferred different levels of protection against cell death. The observed protection against cell death may be partly due to dominant-negative effects of mutant p53, however, it does not appear to be robust enough to account for the extent of cell survival. Furthermore, mutant p53 conferred resistance to docetaxol, which is thought to induce cell death through predominantly p53-independent mechanisms. These data suggest that mutant p53 can protect against both p53-dependent and p53-independent cell death processes. Conversely, transcriptional induction of Noxa and Puma implies that “p53-restoration therapy” may remain a feasible treatment strategy even in tumours that bear mutations in p53 and that the role of a dominant-negative effect for some mutant p53 proteins may be less important than previously considered, at least in lymphoma cells. We are also examining the effect of mutant p53 on lymphoma development utilizing a hematopoietic reconstitution model and retroviral over-expression of mutant p53 proteins. The different mutant p53 proteins investigated exhibited distinct effects during tumorigenesis. The R246Q mutant p53 protein markedly accelerated lymphoma development in the context of MYC over-expression. The R246Q mutant p53 protein demonstrated strong selection in p53-deficient (p53-/-) hematopoietic cells during reconstitution indicative of an advantageous activity in emergency hematopoiesis. Overall, these findings provide evidence for a positive oncogenic role of mutant p53 in hematopoietic cells that provides a particularly potent selective advantage in the context of MYC driven lymphoma development. Importantly, different p53 mutations exhibit different functional properties such that different p53 mutations are likely to be associated with distinct risk in human malignant disease. Disclosures No relevant conflicts of interest to declare.

1998 ◽  
Vol 84 (5) ◽  
pp. 517-520 ◽  
Author(s):  
Vincenzo Chiarugi ◽  
Lucia Magnelli ◽  
Marina Cinelli

Wild-type p53 is involved in cellular response to DNA damage including cell cycle control, DNA repair and activation of apoptosis. Accumulation of p53 protein following DNA damage may initiate the apoptotic process, resulting in cell death. DNA damage induced by radiation is an example of apoptotic stimulus involving p53. Regulation of apoptosis by p53 can occur through transcriptional regulation of pro-apoptotic (e.g. bax) and anti-apoptotic (e.g. bel-2) factors. Although wild-type p53 usually sensitizes cells to radiation therapy, p53 mutations have a variable effect on radiation response. For example p53 mutations in bone or breast tumors have been found to be associated with resistance to chemotherapeutic drugs or ionizing radiation. Mutated p53 has has been reported to increase sensitivity to radiation and drugs in colorectal and bladder tumors. The present brief commentary tries to find an explanation at molecular level of these conflicting results.


Gene Therapy ◽  
1999 ◽  
Vol 6 (1) ◽  
pp. 22-33 ◽  
Author(s):  
A Vinyals ◽  
M A Peinado ◽  
M Gonzalez-Garrigues ◽  
M Monzó ◽  
R D Bonfil ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Yong Shi ◽  
Erik Norberg ◽  
Helin Vakifahmetoglu-Norberg

One of the most notoriously altered genes in human cancer is the tumor-suppressor TP53, which is mutated with high frequency in more cancers than any other tumor suppressor gene. Beyond the loss of wild-type p53 functions, mutations in the TP53 gene often lead to the expression of full-length proteins with new malignant properties. Among the defined oncogenic functions of mutant p53 is its effect on cell metabolism and autophagy. Due to the importance of autophagy as a stress adaptive response, it is frequently dysfunctional in human cancers. However, the role of p53 is enigmatic in autophagy regulation. While the complex action of the wild-type p53 on autophagy has extensively been described in literature, in this review, we focus on the conceivable role of distinct mutant p53 proteins in regulating different autophagic pathways and further discuss the available evidence suggesting a possible autophagy stimulatory role of mutant p53. Moreover, we describe the involvement of different autophagic pathways in targeting and degrading mutant p53 proteins, exploring the potential strategies of targeting mutant p53 in cancer by autophagy.


1992 ◽  
Vol 12 (3) ◽  
pp. 1357-1365
Author(s):  
J M Nigro ◽  
R Sikorski ◽  
S I Reed ◽  
B Vogelstein

Human wild-type and mutant p53 genes were expressed under the control of a galactose-inducible promoter in Saccharomyces cerevisiae. The growth rate of the yeast was reduced in cells expressing wild-type p53, whereas cells transformed with mutant p53 genes derived from human tumors were less affected. Coexpression of the normal p53 protein with the human cell cycle-regulated protein kinase CDC2Hs resulted in much more pronounced growth inhibition that for p53 alone. Cells expressing p53 and CDC2Hs were partially arrested in G1, as determined by morphological analysis and flow cytometry. p53 was phosphorylated when expressed in the yeast, but differences in phosphorylation did not explain the growth inhibition attributable to coexpression of p53 and CDC2Hs. These results suggest that wild-type p53 has a growth-inhibitory activity in S. cerevisiae similar to that observed in mammalian cells and suggests that this yeast may provide a useful model for defining the pathways through which p53 acts.


1993 ◽  
Vol 13 (1) ◽  
pp. 301-306 ◽  
Author(s):  
C A Finlay

Expression of a p53-associated protein, Mdm-2 (murine double minute-2), can inhibit p53-mediated transactivation. In this study, overexpression of the Mdm-2 protein was found to result in the immortalization of primary rat embryo fibroblasts (REFs) and, in conjunction with an activated ras gene, in the transformation of REFs. The effect of wild-type p53 on the transforming properties of mdm-2 was determined by transfecting REFs with ras, mdm-2, and normal p53 genes. Transfection with ras plus mdm-2 plus wild-type p53 resulted in a 50% reduction in the number of transformed foci (relative to the level for ras plus mdm-2); however, more than half (9 of 17) of the cell lines derived from these foci expressed low levels of a murine p53 protein with the characteristics of a wild-type p53. These results are in contrast to previous studies which demonstrated that even minimal levels of wild-type p53 are not tolerated in cells transformed by ras plus myc, E1A, or mutant p53. The mdm-2 oncogene can overcome the previously demonstrated growth-suppressive properties of p53.


Blood ◽  
2018 ◽  
Vol 131 (25) ◽  
pp. 2789-2802 ◽  
Author(s):  
Alexander Jethwa ◽  
Mikołaj Słabicki ◽  
Jennifer Hüllein ◽  
Marius Jentzsch ◽  
Vineet Dalal ◽  
...  

Key Points The HAT complex member TRRAP is vital for maintaining high p53 levels by shielding it against the natural p53 degradation machinery. Acetylation-modifying complexes regulate p53 protein stability, which may provide a basis for therapeutic targeting of mutant p53.


1992 ◽  
Vol 12 (12) ◽  
pp. 5581-5592 ◽  
Author(s):  
E Shaulian ◽  
A Zauberman ◽  
D Ginsberg ◽  
M Oren

Mutations in the p53 gene are most frequent in cancer. Many p53 mutants possess transforming activity in vitro. In cells transformed by such mutants, the mutant protein is oligomerized with endogenous cell p53. To determine the relevance of oligomerization for transformation, miniproteins containing C-terminal portions of p53 were generated. These miniproteins, although carrying no point mutation, transformed at least as efficiently as full-length mutant p53. Transforming activity was coupled with the ability to oligomerize with wild-type p53, as well as with the ability to abrogate sequence-specific DNA binding by coexpressed wild-type p53. These findings suggest that p53-mediated transformation may operate through a dominant negative mechanism, involving the generation of DNA binding-incompetent oligomers.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1330-1330
Author(s):  
Alfonso Quintas-Cardama ◽  
Sean M. Post ◽  
Kensuke Kojima ◽  
Yi Hua Qiu ◽  
Michael Andreeff ◽  
...  

Abstract Background The tumor suppressor p53 is frequently mutated in human cancer, including acute myeloid leukemia (AML), particularly in cases with high-risk cytogenetics. It has been shown that p53 stabilization, which frequently occurs when the protein is mutated, can compromise its function. We have shown that p53 stabilization, regardless of the presence of mutations, suggesting alterations of other components in the p53 pathway. Methodology p53 expression was determined using high-throughput reverse phase protein array (RPPA) technology in 719 samples from 511 pts. Eleven CD34+ bone marrow (BM) and 10 normal peripheral blood (PB) lymphocyte samples were used as controls. Samples were printed as 5 serial 1:2 dilutions in duplicate using an Aushon 2470 Arrayer. Mutational status of p53 alleles was assessed by Sanger sequencing of exons 5 through 9. Expression of components of the p53 pathway was determined using standard immunohistochemical techniques. Nutlin-3a was used in in vitro culture experiments. Results Paired PB- and BM-derived AML samples expressed similar p53 levels (p=0.25). A trend towards higher p53 expression at relapsed was observed among 47 paired diagnosis/relapse samples (p=0.07). p53 expression correlated directly with CD34 (p=0.001) and inversely correlated with WBC (p=0.007), PB and BM blast burden (p=0.0001), and survival (p=0.01). High p53 (p53high) expression was more associated with unfavorable cytogenetics, particularly -5 (p=0.00001). p53high resulted in lower complete remission (CR) rates (51% vs 56%; p=??), higher relapsed rates (82% vs 62%; p=??), and shorter median overall survival (OS; 29.8 vs. 51 wks, p=0.009) compared to p53low pts. Most cases with p53high had unfavorable cytogenetics. We next correlated p53 stabilization with the presence of p53 mutations in 68 pts. p53 mutations were detected in 20/54 (37%) p53high pts and in 0/14 (0%) pts with p53low. p53high, either in the presence (29 wks) or in the absence (24 wks) of p53 mutations (p=1.0), was associated with significantly shorter OS compared with p53low pts (56 wks; p=0.05). Multivariate analysis revealed p53 expression to be an independent risk factor for survival in AML (p=0.02). p53high was positively correlated with p53pSER15 (p=0.00001), Rbp807p811 (p=0.0002), BAD (p=0.0001), cleaved PARP (p=0.002), and cleaved PARP (p=0.01), and negatively with p21 (p=0.01), and MDM2 (p=0.001).Given the similar OS in p53high pts carrying mutant or wild-type p53, we scored the immunohistochemical expression of MDM2, MDM4, and p21 in 30 p53high pts (9 p53 mutated, 21 wild-type p53). Overexpression of MDM2 was observed in 44% vs 48% pts with mutant vs wild-type p53, respectively, whereas rates were 67% vs 62% for MDM4, and 0% vs 19% for p21, for each respective genotype. Overall, of the 21 p53high pts carrying wild-type p53, 15 (71%) had overexpression of MDM2 and/or MDM4, whereas 81% had no p21 expression, indicating deficient activation of the p53 pathway similar to those cases carrying mutant p53. We are currently assessing response to nutlin-3a therapy in 24 primary AML samples (4 mutant p53, 20 wild-type p53). Results showing the impact of p53 mutation and/or stabilization, and expression levels of MDM2, MDM4, and p21 on nutlin-3a therapy will be presented. Conclusions p53 stabilization (p53high) is a powerful predictive and prognostic factor in AML, which is independent of the presence of mutant p53 alleles. Poor outcomes in pts with p53high lacking p53 mutations are very frequently associated with overexpression of negative regulators of p53 such as MDM2 and/or MDM4 and p21 downregulation, indicating a functionally altered p53 pathway. These findings may have implications for therapies targeting the MDM2/p53 axis in AML. Disclosures: No relevant conflicts of interest to declare.


1994 ◽  
Vol 14 (8) ◽  
pp. 5182-5191
Author(s):  
P Wang ◽  
M Reed ◽  
Y Wang ◽  
G Mayr ◽  
J E Stenger ◽  
...  

Wild-type p53 forms tetramers and multiples of tetramers. Friedman et al. (P. N. Friedman, X. B. Chen, J. Bargonetti, and C. Prives, Proc. Natl. Acad. Sci. USA 90:3319-3323, 1993) have reported that human p53 behaves as a larger molecule during gel filtration than it does during sucrose gradient sedimentation. These differences argue that wild-type p53 has a nonglobular shape. To identify structural and oligomerization domains in p53, we have investigated the physical properties of purified segments of p53. The central, specific DNA-binding domain within murine amino acids 80 to 320 and human amino acids 83 to 323 behaves predominantly as monomers during analysis by sedimentation, gel filtration, and gel electrophoresis. This consistent behavior argues that the central region of p53 is globular in shape. Under appropriate conditions, however, this segment can form transient oligomers without apparent preference for a single oligomeric structure. This region does not enhance transformation by other oncogenes. The biological implications of transient oligomerization by this central segment, therefore, remain to be demonstrated. Like wild-type p53, the C terminus, consisting of murine amino acids 280 to 390 and human amino acids 283 to 393, behaves anomalously during gel filtration and apparently has a nonglobular shape. Within this region, murine amino acids 315 to 350 and human amino acids 323 to 355 are sufficient for assembly of stable tetramers. The finding that murine amino acids 315 to 360 enhance transformation by other oncogenes strongly supports the role of p53 tetramerization in oncogenesis. Amino acids 330 to 390 of murine p53 and amino acids 340 to 393 of human p53, which have been implicated by Sturzbecher et al. in tetramerization (H.-W. Sturzbecher, R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins, Oncogene 7:1513-1523, 1992), do not form stable tetramers under our conditions. Our findings indicate that p53 has at least two autonomous oligomerization domains: a strong tetramerization domain in its C-terminal region and a weaker oligomerization domain in the central DNA binding region of p53. Together, these domains account for the formation of tetramers and multiples of tetramers by wild-type p53. The tetramerization domain is the major determinant of the dominant negative phenotype leading to transformation by mutant p53s.


Sign in / Sign up

Export Citation Format

Share Document