scholarly journals Inhibition of cellular proliferation by the Wilms' tumor suppressor WT1 is associated with suppression of insulin-like growth factor I receptor gene expression.

1995 ◽  
Vol 15 (7) ◽  
pp. 3516-3522 ◽  
Author(s):  
H Werner ◽  
Z Shen-Orr ◽  
F J Rauscher ◽  
J F Morris ◽  
C T Roberts ◽  
...  

We have investigated the regulation of the insulin-like growth factor I receptor (IGF-I-R) gene promoter by the Wilms' tumor suppressor WT1 in intact cells. The levels of endogenous IGF-I-R mRNA and the activity of IGF-I-R gene promoter fragments in luciferase reporter constructs were found to be significantly higher in G401 cells (a Wilms' tumor-derived cell line lacking detectable WT1 mRNA) than in 293 cells (a human embryonic kidney cell line which expresses significant levels of WT1 mRNA). To study whether WT1 could suppress the expression of the endogenous IGF-I-R gene, WT1-negative G401 cells were stably transfected with a WT1 expression vector. Expression of WT1 mRNA in G401 cells resulted in a significant decrease in the rate of cellular proliferation, which was associated with a reduction in the levels of IGF-I-R mRNA, promoter activity, and ligand binding and with a reduction in IGF-I-stimulated cellular proliferation, thymidine incorporation, and anchorage-independent growth. These data suggest that a major aspect of the action of the WT1 tumor suppressor is the repression of IGF-I-R gene expression.

1990 ◽  
Vol 125 (3) ◽  
pp. 381-386 ◽  
Author(s):  
K. E. Bornfeldt ◽  
H. J. Arnqvist ◽  
G. Norstedt

ABSTRACT The aim of this investigation was to study the regulation of insulin-like growth factor-I (IGF-I) gene expression in cultured rat aortic smooth muscle cells. Near-confluent cells were deprived of serum for 24 h and then exposed to IGF-I, insulin, serum, basic fibroblast growth factor (basic FGF), platelet-derived growth factor (PDGF-BB; consisting of B-chain homodimer) or GH for 24 h. Levels of IGF-I mRNA were measured by solution hybridization. The level of IGF-I mRNA was markedly decreased by 10% (v/v) newborn calf serum (78 ± 4 (s.e.m.) % decrease), 1 nmol basic FGF/1 (53 ± 8%), and 1 nmol PDGF-BB/1 (40 ± 3%) when measured after 24 h. The effect of PDGF-BB was significant after 6 h and became more marked after 24 h. GH (1 nmol/l or 0.1 μmol/l or insulin (1 nmol/l had no effect after 24 h, whereas IGF-I (1 nmol/l and insulin (10 μmol/l increased IGF-I mRNA 64 ± 20% and 46±14% respectively. The increase caused by IGF-I was demonstrated after 3 h, and was most marked after 24 h. Using Northern blot analysis of cultured aortic smooth muscle cells, IGF-I transcripts of 7-4, 1.7 and 1.1–0.8 kilobases were observed. Exposure of the cells to 10% serum, 1 nmol basic FGF/1 or 1 nmol PDGF-BB/1 for 48 h increased the cell number by 104 ±7%, 64 ± 3% and 61±22% respectively, while IGF-I, insulin and GH had little effect. In conclusion, IGF-I, and high concentrations of insulin, increased IGF-I mRNA in vascular smooth muscle cells, whereas factors which were stronger mitogens decreased IGF-I gene expression. Journal of Endocrinology (1990) 125, 381–386


2004 ◽  
Vol 183 (3) ◽  
pp. 477-486 ◽  
Author(s):  
Chanika Phornphutkul ◽  
Ke-Ying Wu ◽  
Xu Yang ◽  
Qian Chen ◽  
Philip A Gruppuso

Insulin-like growth factor-I (IGF-I) is a critical regulator of skeletal growth. While IGF-I has been shown to be a potent chondrocyte mitogen in vitro, its role in chondrocyte differentiation is less well characterized. We chose to study the action of IGF-I on an accepted model of chondrocyte differentiation, the ATDC5 cell line. Insulin concentrations sufficiently high to interact with the IGF-I receptor are routinely used to induce ATDC5 cells to differentiate. Therefore, we first examined the ability of IGF-I to promote chondrocyte differentiation at physiological concentrations. IGF-I could induce differentiation of these cells at concentrations below 10 nM. However, increasing IGF-I concentrations were less potent at inducing differentiation. We hypothesized that mitogenic effects of IGF-I might inhibit its differentiating effects. Indeed, the extracellular-signal-regulated kinase (ERK)-pathway inhibitor PD98059 inhibited ATDC5 cell DNA synthesis while enhancing differentiation. This suggested that the ability of IGF-I to promote both proliferation and differentiation might require that its signaling be modulated through the differentiation process. We therefore compared IGF-I-mediated ERK activation in proliferating and hypertrophic chondrocytes. IGF-I potently induced ERK activation in proliferating cells, but minimal ERK response was seen in hypertrophic cells. In contrast, IGF-I-mediated Akt activation was unchanged by differentiation, indicating intact upstream IGF-I receptor signaling. Similar findings were observed in the RCJ3.1C5.18 chondrogenic cell line and in primary chick chondrocytes. We conclude that IGF-I promotes both proliferation and differentiation of chondrocytes and that the differentiation effects of IGF-I may require uncoupling of signaling to the ERK pathway.


Sign in / Sign up

Export Citation Format

Share Document