scholarly journals A carboxy-terminal basic region controls RNA polymerase III transcription factor activity of human La protein.

1997 ◽  
Vol 17 (10) ◽  
pp. 5823-5832 ◽  
Author(s):  
J L Goodier ◽  
H Fan ◽  
R J Maraia

Human La protein has been shown to serve as a transcription factor for RNA polymerase III (pol III) by facilitating transcription termination and recycling of transcription complexes. In addition, La binds to the 3' oligo(U) ends common to all nascent pol III transcripts, and in the case of B1-Alu RNA, protects it from 3'-end processing (R. J. Maraia, D. J. Kenan, and J. D. Keene, Mol. Cell. Biol. 14:2147-2158, 1994). Others have previously dissected the La protein into an N-terminal domain that binds RNA and a C-terminal domain that does not. Here, deletion and substitution mutants of La were examined for general RNA binding, RNA 3'-end protection, and transcription factor activity. Although some La mutants altered in a C-terminal basic region bind RNA in mobility shift assays, they are defective in RNA 3'-end protection and do not support transcription, while one C-terminal substitution mutant is defective only in transcription. Moreover, a C-terminal fragment lacking RNA binding activity appears able to support low levels of transcription by pol III. While efficient multiround transcription is supported only by mutants that bind RNA and contain a C-terminal basic region. These analyses indicate that RNA binding contributes to but is not sufficient for La transcription factor activity and that the C-terminal domain plays a role in transcription that is distinguishable from simple RNA binding. The transcription factor activity of La can be reversibly inhibited by RNA, suggesting the potential for feedback inhibition of pol III transcription.

2023 ◽  
Vol 83 ◽  
Author(s):  
S. U. Rehman ◽  
K. Muhammad ◽  
E. Novaes ◽  
Y. Que ◽  
A. Din ◽  
...  

Abstract Transcription factors (TF) are a wide class of genes in plants, and these can regulate the expression of other genes in response to various environmental stresses (biotic and abiotic). In the current study, transcription factor activity in sugarcane was examined during cold stress. Initially, RNA transcript reads of two sugarcane cultivars (ROC22 and GT08-1108) under cold stress were downloaded from SRA NCBI database. The reads were aligned into a reference genome and the differential expression analyses were performed with the R/Bioconductor edgeR package. Based on our analyses in the ROC22 cultivar, 963 TF genes were significantly upregulated under cold stress among a total of 5649 upregulated genes, while 293 TF genes were downregulated among a total of 3,289 downregulated genes. In the GT08-1108 cultivar, 974 TF genes were identified among 5,649 upregulated genes and 283 TF genes were found among 3,289 downregulated genes. Most transcription factors were annotated with GO categories related to protein binding, transcription factor binding, DNA-sequence-specific binding, transcription factor complex, transcription factor activity in RNA polymerase II, the activity of nucleic acid binding transcription factor, transcription corepressor activity, sequence-specific regulatory region, the activity of transcription factor of RNA polymerase II, transcription factor cofactor activity, transcription factor activity from plastid promoter, transcription factor activity from RNA polymerase I promoter, polymerase II and RNA polymerase III. The findings of above results will help to identify differentially expressed transcription factors during cold stress. It also provides a comprehensive analysis of the regulation of the transcription activity of many genes. Therefore, this study provides the molecular basis for improving cold tolerance in sugarcane and other economically important grasses.


2015 ◽  
Vol 35 (10) ◽  
pp. 1848-1859 ◽  
Author(s):  
Damian Graczyk ◽  
Robert J. White ◽  
Kevin M. Ryan

Inflammation in the tumor microenvironment has many tumor-promoting effects. In particular, tumor-associated macrophages (TAMs) produce many cytokines which can support tumor growth by promoting survival of malignant cells, angiogenesis, and metastasis. Enhanced cytokine production by TAMs is tightly coupled with protein synthesis. In turn, translation of proteins depends on tRNAs, short abundant transcripts that are made by RNA polymerase III (Pol III). Here, we connect these facts by showing that stimulation of mouse macrophages with lipopolysaccharides (LPS) from the bacterial cell wall causes transcriptional upregulation of tRNA genes. The transcription factor NF-κB is a key transcription factor mediating inflammatory signals, and we report that LPS treatment causes an increased association of the NF-κB subunit p65 with tRNA genes. In addition, we show that p65 can directly associate with the Pol III transcription factor TFIIIB and that overexpression of p65 induces Pol III-dependent transcription. As a consequence of these effects, we show that inhibition of Pol III activity in macrophages restrains cytokine secretion and suppresses phagocytosis, two key functional characteristics of these cells. These findings therefore identify a radical new function for Pol III in the regulation of macrophage function which may be important for the immune responses associated with both normal and malignant cells.


1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


1994 ◽  
Vol 14 (3) ◽  
pp. 2147-2158 ◽  
Author(s):  
R J Maraia ◽  
D J Kenan ◽  
J D Keene

Ample evidence indicates that Alu family interspersed elements retrotranspose via primary transcripts synthesized by RNA polymerase III (pol III) and that this transposition sometimes results in genetic disorders in humans. However, Alu primary transcripts can be processed posttranscriptionally, diverting them away from the transposition pathway. The pol III termination signal of a well-characterized murine B1 (Alu-equivalent) element inhibits RNA 3' processing, thereby stabilizing the putative transposition intermediary. We used an immobilized template-based assay to examine transcription termination by VA1, 7SL, and Alu class III templates and the role of transcript release in the pol III terminator-dependent inhibition of processing of B1-Alu transcripts. We found that the RNA-binding protein La confers this terminator-dependent 3' processing inhibition on transcripts released from the B1-Alu template. Using pure recombinant La protein and affinity-purified transcription complexes, we also demonstrate that La facilitates multiple rounds of transcription reinitiation by pol III. These results illustrate an important role for La in RNA production by demonstrating its ability to clear the termination sites of class III templates, thereby promoting efficient use of transcription complexes by pol III. The role of La as a potential regulatory factor in transcript maturation and how this might apply to Alu interspersed elements is discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Saurabh Mishra ◽  
Shaina H. Hasan ◽  
Rima M. Sakhawala ◽  
Shereen Chaudhry ◽  
Richard J. Maraia

AbstractRNA polymerase III achieves high level tRNA synthesis by termination-associated reinitiation-recycling that involves the essential C11 subunit and heterodimeric C37/53. The C11-CTD (C-terminal domain) promotes Pol III active center-intrinsic RNA 3′-cleavage although deciphering function for this activity has been complicated. We show that the isolated NTD (N-terminal domain) of C11 stimulates Pol III termination by C37/53 but not reinitiation-recycling which requires the NTD-linker (NTD-L). By an approach different from what led to current belief that RNA 3′-cleavage activity is essential, we show that NTD-L can provide the essential function of Saccharomyces cerevisiae C11 whereas classic point mutations that block cleavage, interfere with active site function and are toxic to growth. Biochemical and in vivo analysis including of the C11 invariant central linker led to a model for Pol III termination-associated reinitiation-recycling. The C11 NTD and CTD stimulate termination and RNA 3′-cleavage, respectively, whereas reinitiation-recycling activity unique to Pol III requires only the NTD-linker. RNA 3′-cleavage activity increases growth rate but is nonessential.


Parasitology ◽  
2015 ◽  
Vol 142 (13) ◽  
pp. 1563-1573 ◽  
Author(s):  
D. E. VÉLEZ-RAMÍREZ ◽  
L. E. FLORENCIO-MARTÍNEZ ◽  
G. ROMERO-MEZA ◽  
S. ROJAS-SÁNCHEZ ◽  
R. MORENO-CAMPOS ◽  
...  

SUMMARYRNA polymerase III (Pol III) synthesizes small RNA molecules that are essential for cell viability. Accurate initiation of transcription by Pol III requires general transcription factor TFIIIB, which is composed of three subunits: TFIIB-related factor BRF1, TATA-binding protein and BDP1. Here we report the molecular characterization of BRF1 in Trypanosoma brucei (TbBRF1), a parasitic protozoa that shows distinctive transcription characteristics. In silico analysis allowed the detection in TbBRF1 of the three conserved domains located in the N-terminal region of all BRF1 orthologues, namely a zinc ribbon motif and two cyclin repeats. Homology modelling suggested that, similarly to other BRF1 and TFIIB proteins, the TbBRF1 cyclin repeats show the characteristic structure of five α-helices per repeat, connected by a short random-coiled linker. As expected for a transcription factor, TbBRF1 was localized in the nucleus. Knock-down of TbBRF1 by RNA interference (RNAi) showed that this protein is essential for the viability of procyclic forms of T. brucei, since ablation of TbBRF1 led to growth arrest of the parasites. Nuclear run-on and quantitative real-time PCR analyses demonstrated that transcription of all the Pol III-dependent genes analysed was reduced, at different levels, after RNAi induction.


1998 ◽  
Vol 95 (16) ◽  
pp. 9196-9201 ◽  
Author(s):  
George A. Kassavetis ◽  
Ashok Kumar ◽  
Garth A. Letts ◽  
E. Peter Geiduschek

Transcription factor (TF) IIIB, which directs RNA polymerase (pol) III to its promoters, is made up of three components: the TATA box-binding protein, the TFIIB-related Brf, and the pol III-specific B′′. Certain mutations in Saccharomyces cerevisiae Brf and B′′ retain TFIIIB transcription factor activity with supercoiled DNA but are inactive with linear duplex DNA. Further analysis shows that these inactive TFIIIB–DNA complexes bind pol III and position it appropriately over the transcriptional start site but do not form DNA strand-separated open promoter complexes. It is proposed that the normal function of TFIIIB combines pol III recruitment with an active role in a subsequent step of transcriptional initiation leading to promoter opening.


2005 ◽  
Vol 25 (2) ◽  
pp. 621-636 ◽  
Author(s):  
Ying Huang ◽  
Robert V. Intine ◽  
Amy Mozlin ◽  
Samuel Hasson ◽  
Richard J. Maraia

ABSTRACT Termination by RNA polymerase III (Pol III) produces RNAs whose 3′ oligo(U) termini are bound by La protein, a chaperone that protects RNAs from 3′ exonucleases and promotes their maturation. Multiple reports indicate that yeasts use La-dependent and -independent pathways for tRNA maturation, with defective pre-tRNAs being most sensitive to decay and most dependent on La for maturation and function. The Rpc11p subunit of Pol III shows homology with the zinc ribbon of TFIIS and is known to mediate RNA 3′ cleavage and to be important for termination. We used a La-dependent opal suppressor, tRNASerUGAM, which suppresses ade6-704 and the accumulation of red pigment, to screen Schizosaccaromyces pombe for rpc11 mutants that increase tRNA-mediated suppression. Analyses of two zinc ribbon mutants indicate that they are deficient in Pol III RNA 3′ cleavage activity and produce pre-tRNASerUGAM transcripts with elongated 3′-oligo(U) tracts that are better substrates for La. A substantial fraction of pre-tRNASerUGAM contains too few 3′ Us for efficient La binding and appears to decay in wild-type cells but has elongated oligo(U) tracts and matures along the La-dependent pathway in the mutants. The data indicate that Rpc11p limits RNA 3′-U length and that this significantly restricts pre-tRNAs to a La-independent pathway of maturation in fission yeast.


1998 ◽  
Vol 18 (6) ◽  
pp. 3201-3211 ◽  
Author(s):  
Hao Fan ◽  
John L. Goodier ◽  
Joel R. Chamberlain ◽  
David R. Engelke ◽  
Richard J. Maraia

ABSTRACT Eukaryotic precursor (pre)-tRNAs are processed at both ends prior to maturation. Pre-tRNAs and other nascent transcripts synthesized by RNA polymerase III are bound at their 3′ ends at the sequence motif UUUOH [3′ oligo(U)] by the La antigen, a conserved phosphoprotein whose role in RNA processing has been associated previously with 3′-end maturation only. We show that in addition to its role in tRNA 3′-end maturation, human La protein can also modulate 5′ processing of pre-tRNAs. Both the La antigen’s N-terminal RNA-binding domain and its C-terminal basic region are required for attenuation of pre-tRNA 5′ processing. RNA binding and nuclease protection assays with a variety of pre-tRNA substrates and mutant La proteins indicate that 5′ protection is a highly selective activity of La. This activity is dependent on 3′ oligo(U) in the pre-tRNA for interaction with the N-terminal RNA binding domain of La and interaction of the C-terminal basic region of La with the 5′ triphosphate end of nascent pre-tRNA. Phosphorylation of La is known to occur on serine 366, adjacent to the C-terminal basic region. We show that this modification interferes with the La antigen’s ability to protect pre-tRNAi Met from 5′ processing either by HeLa extract or purified RNase P but that it does not affect interaction with the 3′ end of pre-tRNA. These findings provide the first evidence to indicate that tRNA 5′-end maturation may be regulated in eukaryotes. Implications of triphosphate recognition is discussed as is a role for La phosphoprotein in controlling transcriptional and posttranscriptional events in the biogenesis of polymerase III transcripts.


2005 ◽  
Vol 25 (21) ◽  
pp. 9406-9418 ◽  
Author(s):  
Ashish Saxena ◽  
Beicong Ma ◽  
Laura Schramm ◽  
Nouria Hernandez

ABSTRACT The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAPc, a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.


Sign in / Sign up

Export Citation Format

Share Document