scholarly journals Evidence for the involvement of mouse heat shock factor 1 in the atypical expression of the HSP70.1 heat shock gene during mouse zygotic genome activation.

1997 ◽  
Vol 17 (2) ◽  
pp. 778-788 ◽  
Author(s):  
E Christians ◽  
E Michel ◽  
P Adenot ◽  
V Mezger ◽  
M Rallu ◽  
...  

The mouse HSP70.1 gene, which codes for a heat shock protein (hsp70), is highly transcribed at the onset of zygotic genome activation (ZGA). This expression, which occurs in the absence of stress, is then repressed. It has been claimed that this gene does not exhibit a stress response until the blastocyst stage. The promoter of HSP70.1 contains four heat shock element (HSE) boxes which are the binding sites of heat shock transcription factors (HSF). We have been studying the presence and localization of the mouse HSFs, mHSF1 and mHSF2, at different stages of embryo development. We show that mHSF1 is already present at the one-cell stage and concentrated in the nucleus. Moreover, by mutagenizing HSE sequences and performing competition experiments (in transgenic embryos with the HSP70.1 promoter inserted before a reporter gene), we show that, in contrast with previous findings, HSE boxes are involved in this spontaneous activation. Therefore, we suggest that HSF1 and HSE are important in this transient expression at the two-cell stage and that the absence of typical inducibility at this early stage of development results mainly from the high level of spontaneous transcription of this gene during the ZGA.

2008 ◽  
Vol 20 (7) ◽  
pp. 818 ◽  
Author(s):  
Luca Magnani ◽  
Christine M. Johnson ◽  
Ryan A. Cabot

Zygotic genome activation (ZGA) is a major event during cleavage development. In vitro manipulation of mammalian embryos (including embryo culture) can result in developmental arrest around the time of ZGA. Eukaryotic elongation initiation factor 1A (eIF1A) has been used as a marker for ZGA in some mammalian species. We hypothesised expression of eIF1A can be used to assess ZGA in the pig; we also hypothesised that the expression profile of eIF1A can be used to assess developmental potential in vitro. The aims of the present study were to determine the expression pattern of eIF1A during porcine cleavage development and to assess its expression levels in embryos of different quality. We used a real-time reverse transcription–polymerase chain reaction assay to quantify eIF1A transcripts at different time points during cleavage development in porcine embryos produced by parthenogenetic activation (PA) and in vitro fertilisation (IVF). We found that eIF1A is activated at the two-cell stage in IVF embryos and at the four-cell stage in PA embryos. We showed that the increase in transcript levels observed in parthenogenetic embryos is dependent on de novo transcription. We found altered levels of eIF1A transcripts in parthenogenetic embryos that presented as either two- or eight-cell embryos 48 h after activation compared with four-cell embryos at the same time point. Our work supports the hypothesis that eIF1A is a marker of porcine ZGA and its expression profile can be used to assess embryo quality.


2019 ◽  
Vol 48 (2) ◽  
pp. 879-894 ◽  
Author(s):  
Qian-Qian Sha ◽  
Ye-Zhang Zhu ◽  
Sen Li ◽  
Yu Jiang ◽  
Lu Chen ◽  
...  

Abstract An important event of the maternal-to-zygotic transition (MZT) in animal embryos is the elimination of a subset of the maternal transcripts that accumulated during oogenesis. In both invertebrates and vertebrates, a maternally encoded mRNA decay pathway (M-decay) acts before zygotic genome activation (ZGA) while a second pathway, which requires zygotic transcription, subsequently clears additional mRNAs (Z-decay). To date the mechanisms that activate the Z-decay pathway in mammalian early embryos have not been investigated. Here, we identify murine maternal transcripts that are degraded after ZGA and show that inhibition of de novo transcription stabilizes these mRNAs in mouse embryos. We show that YAP1-TEAD4 transcription factor-mediated transcription is essential for Z-decay in mouse embryos and that TEAD4-triggered zygotic expression of terminal uridylyltransferases TUT4 and TUT7 and mRNA 3′-oligouridylation direct Z-decay. Components of the M-decay pathway, including BTG4 and the CCR4-NOT deadenylase, continue to function in Z-decay but require reinforcement from the zygotic factors for timely removal of maternal mRNAs. A long 3′-UTR and active translation confer resistance of Z-decay transcripts to M-decay during oocyte meiotic maturation. The Z-decay pathway is required for mouse embryo development beyond the four-cell stage and contributes to the developmental competence of preimplantation embryos.


2021 ◽  
Author(s):  
Tianrui Zhang ◽  
Yingying Zheng ◽  
Tianya Kuang ◽  
Lianyu Yang ◽  
Hailong Jiang ◽  
...  

Abstract Background:Arginine has a positive effect on preimplantation development in pigs. However, the exact mechanism by which arginine promotes embryonic development to the blastocyst stage is not undefined. Here, single-cell RNA-sequencing technology was applied to porcine in vivo pre-implantation embryos from zygote to morula to determine transcription patterns of arginine metabolism-related genes during preimplantation embryonic development.Results:Transcriptome sequencing showed that arginine metabolism-related genes clearly changed from the 2-cell stage to the 4-cell stage, where zygotic genome activation (ZGA) occurred in porcine embryos. Further analysis of the correlation between arginine metabolism and ZGA shows that arginine metabolism-related genes are significantly correlated with key ZGA genes such as ZSCAN4, DPPA2 and EIF1A, indicating that arginine metabolism may be an indicator of porcine ZGA. To explore the correlation between arginine metabolism and ZGA, embryos cultured in the medium that removes all the amino acids, proteins and pyruvate in the PZM3 medium were employed to generate the ZGA blocked embryo model. The 4-cell arrest rate significantly increased at 72 h after activation, indicating impeded embryonic development. Meanwhile, results of immunofluorescent staining showed that the expression of SIRT1 protein during ZGA was significantly inhibited. Results of quantitative PCR showed that the expression of zygotic genes (ZSCAN4, DPPA2 and EIF1A) was significantly decreased. The above results indicate that the ZGA blocked embryo model was successfully established. Adding of arginine recovered embryonic development, SIRT1 and zygotic genes expression levels and initiated the ZGA. In addition, ROS content significantly increased when ZGA was blocked, and the GSH, ATP and lipid droplet content significantly decreased. After the addition of arginine in the block group, the ROS content significantly decreased, and the GSH, ATP and lipid droplet content significantly increased. Moreover, the ornithine decarboxylase (ODC) inhibitor difluoromethylornithine (DFMO) and arginine were added to the block group at the same time, and the effect of arginine was found to be inhibited. Conclusions: Arginine is essential for ZGA in porcine embryos. Arginine contributes to porcine ZGA by promoting polyamine synthesis in porcine embryos.


2018 ◽  
Author(s):  
Alberto De Iaco ◽  
Alexandre Coudray ◽  
Julien Duc ◽  
Didier Trono

AbstractAfter fertilization of the transcriptionally silent oocyte, expression from both parental chromosomes is launched through so-called zygotic genome activation (ZGA), occurring in the mouse at the 2-cell stage. Amongst the first elements to be transcribed are the Dux gene, the product of which secondarily induces a wide array of ZGA genes, and a subset of evolutionary recent LINE-1 retrotransposons, which regulate chromatin accessibility in the early embryo. The maternally-inherited factors that activate Dux and LINE-1 transcription have so far remained unknown. Here we identify the paralog proteins DPPA2 and DPPA4 as responsible for this process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kohtaro Morita ◽  
Yuki Hatanaka ◽  
Shunya Ihashi ◽  
Masahide Asano ◽  
Kei Miyamoto ◽  
...  

AbstractPaternal genome reprogramming, such as protamine–histone exchange and global DNA demethylation, is crucial for the development of fertilised embryos. Previously, our study showed that one of histone arginine methylation, asymmetrically dimethylated histone H3R17 (H3R17me2a), is necessary for epigenetic reprogramming in the mouse paternal genome. However, roles of histone arginine methylation in reprogramming after fertilisation are still poorly understood. Here, we report that H3R2me2s promotes global transcription at the 1-cell stage, referred to as minor zygotic genome activation (ZGA). The inhibition of H3R2me2s by expressing a histone H3.3 mutant H3.3R2A prevented embryonic development from the 2-cell to 4-cell stages and significantly reduced global RNA synthesis and RNA polymerase II (Pol II) activity. Consistent with this result, the expression levels of MuERV-L as minor ZGA transcripts were decreased by forced expression of H3.3R2A. Furthermore, treatment with an inhibitor and co-injection of siRNA to PRMT5 and PRMT7 also resulted in the attenuation of transcriptional activities with reduction of H3R2me2s in the pronuclei of zygotes. Interestingly, impairment of H3K4 methylation by expression of H3.3K4M resulted in a decrease of H3R2me2s in male pronuclei. Our findings suggest that H3R2me2s together with H3K4 methylation is involved in global transcription during minor ZGA in mice.


1991 ◽  
Vol 11 (7) ◽  
pp. 3504-3514
Author(s):  
N F Cunniff ◽  
J Wagner ◽  
W D Morgan

We investigated the recognition of the conserved 5-bp repeated motif NGAAN, which occurs in heat shock gene promoters of Drosophila melanogaster and other eukaryotic organisms, by human heat shock transcription factor (HSF). Extended heat shock element mutants of the human HSP70 gene promoter, containing additional NGAAN blocks flanking the original element, showed significantly higher affinity than the wild-type promoter element for human HSF in vitro. Protein-DNA contact positions were identified by hydroxyl radical protection, diethyl pyrocarbonate interference, and DNase I footprinting. New contacts in the mutant HSE constructs corresponded to the locations of additional NGAAN motifs. The pattern of binding indicated the occurrence of multiple DNA binding modes for HSF with the various constructs and was consistent with an oligomeric, possibly trimeric, structure of the protein. In contrast to the improved binding, the extended heat shock element mutant constructs did not exhibit dramatically increased heat-inducible transcription in transient expression assays with HeLa cells.


Sign in / Sign up

Export Citation Format

Share Document