scholarly journals Reconstitution of a MEC1-independent checkpoint in yeast by expression of a novel human fork head cDNA.

1997 ◽  
Vol 17 (6) ◽  
pp. 3037-3046 ◽  
Author(s):  
D Pati ◽  
C Keller ◽  
M Groudine ◽  
S E Plon

A novel human cDNA, CHES1 (checkpoint suppressor 1), has been isolated by suppression of the mec1-1 checkpoint mutation in Saccharomyces cerevisiae. CHES1 suppresses a number of DNA damage-activated checkpoint mutations in S. cerevisiae, including mec1, rad9, rad24, dun1, and rad53. CHES1 suppression of sensitivity to DNA damage is specific for checkpoint-defective strains, in contrast to DNA repair-defective strains. Presence of CHES1 but not a control vector resulted in G2 delay after UV irradiation in checkpoint-defective strains, with kinetics, nuclear morphology, and cycloheximide resistance similar to those of a wild-type strain. CHES1 can also suppress the lethality, UV sensitivity, and G2 checkpoint defect of a mec1 null mutation. In contrast to this activity, CHES1 had no measurable effect on the replication checkpoint as assayed by hydroxyurea sensitivity of a mec1 strain. Sequence analysis demonstrates that CHES1 is a novel member of the fork head/Winged Helix family of transcription factors. Suppression of the checkpoint-defective phenotype requires a 200-amino-acid domain in the carboxy terminus of the protein which is distinct from the DNA binding site. Analysis of CHES1 activity is most consistent with activation of an alternative MEC1-independent checkpoint pathway in budding yeast.

Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Muhseena N. Katheeja ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background The budding yeast protein Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This helicase is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with faster kinetics in chl1 mutants compared to wild-type cells. Also, more damage to DNA is observed in chl1 cells. The viability falls synergistically in rad24chl1 cells. The regulation of Chl1p on budding kinetics in G1 phase falls in line with Rad9p/Chk1p and shows a synergistic effect with Rad24p/Rad53p. rad9chl1 and chk1chl1 shows similar bud emergence as the single mutants chl1, rad9 and chk1. Whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24, rad53 and chl1. In presence of MMS induced damage, synergistic with Rad24p indicates Chl1p’s role as a checkpoint at G1/S acting parallel to damage checkpoint pathway. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further, we have also confirmed that the checkpoint defect functions in parallel to the damage checkpoint pathway of Rad24p. Conclusion Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint activity in presence of damage. This confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1p thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p for Rad53p activation when damaging agents perturb the DNA. Apart from checkpoint activation, it also regulates the budding kinetics as a repair gene.


2021 ◽  
Author(s):  
Katheeja Muhseena N. ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background: The helicase Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This budding yeast protein is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results: G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with a faster kinetics in chl1 mutants compared to wild-type cells. This role of Chl1p in G1 phase is Rad9p dependent and independent of Rad24 and Rad53. rad9chl1 shows similar bud emergence as the single mutants chl1 and rad9 whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24 , rad53 and chl1 . In case of damage induced by genotoxic agent like hydroxyurea, Chl1p acts as a checkpoint at G1/S. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further we have observed that the checkpoint defect is synergistic with the replication checkpoint Sgs1p and functions in prallel to the checkpoint pathway of Rad24p. Conclusion: Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint, confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1 thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p as well as Rad53p activation when damaging agents perturbs the DNA.


Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1419-1428
Author(s):  
Zhiheng Xu ◽  
David Norris

Abstract In eukaryotic cells, checkpoint pathways arrest cell-cycle progression if a particular event has failed to complete appropriately or if an important intracellular structure is defective or damaged. Saccharomyces cerevisiae strains that lack the SFP1 gene fail to arrest at the G2 DNA-damage checkpoint in response to genomic injury, but maintain their ability to arrest at the replication and spindle-assembly checkpoints. sfp1Δ mutants are characterized by a premature entrance into mitosis during a normal (undamaged) cell cycle, while strains that overexpress Sfp1p exhibit delays in G2. Sfp1p therefore acts as a repressor of the G2/M transition, both in the normal cell cycle and in the G2 checkpoint pathway. Sfp1 is a nuclear protein with two Cys2His2 zinc-finger domains commonly found in transcription factors. We propose that Sfp1p regulates the expression of gene products involved in the G2/M transition during the mitotic cell cycle and the DNA-damage response. In support of this model, overexpression of Sfp1p induces the expression of the PDS1 gene, which is known to encode a protein that regulates the G2 checkpoint.


2004 ◽  
Vol 24 (22) ◽  
pp. 10016-10025 ◽  
Author(s):  
Daisuke Nakada ◽  
Yukinori Hirano ◽  
Katsunori Sugimoto

ABSTRACT The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.


2005 ◽  
Vol 25 (23) ◽  
pp. 10665-10673 ◽  
Author(s):  
Yoav Lubelsky ◽  
Nina Reuven ◽  
Yosef Shaul

ABSTRACT The yeast Saccharomyces cerevisiae Crt1 transcription repressor is an effector of the DNA damage and replication checkpoint pathway. Crt1 binds and represses genes encoding ribonucleotide reductase (RNR) and its own promoter, establishing a negative-feedback pathway. The role of Rfx1, the mammalian Crt1 homologue, remained uncertain. In this study we investigated the possibility that Rfx1 plays a similar function in animal cells. We show here that, like Crt1, Rfx1 binds and represses its own promoter. Furthermore, Rfx1 binding to its promoter is reduced upon induction of a DNA replication block by hydroxyurea, which led to a release of repression. Significantly, like Crt1, Rfx1 binds and represses the RNR-R2 gene. Upon blocking replication and UV treatment, expression of both Rfx1 and RNR-R2 is induced; however, unlike the results seen with the RNR-R2 gene, the derepression of the RFX1 gene is only partially blocked by inhibiting Chk1, the DNA checkpoint kinase. This report provides evidence for a common mechanism for Crt1 and Rfx1 expression and for the conservation of their mode of action in response to a DNA replication block. We suggest that Rfx1 plays a role in the DNA damage response by down-regulating a subset of genes whose expression is increased in response to replication blocking and UV-induced DNA damage.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 661-672 ◽  
Author(s):  
Jodi L Vogel ◽  
Vincent Geuskens ◽  
Lucie Desmet ◽  
N Patrick Higgins ◽  
Ariane Toussaint

Abstract Mutations in an N-terminal 70-amino acid domain of bacteriophage Mu's repressor cause temperature-sensitive DNA-binding activity. Surprisingly, amber mutations can conditionally correct the heat-sensitive defect in three mutant forms of the repressor gene, cts25 (D43-G), cts62 (R47-Q and cts71 (M28-I), and in the appropriate bacterial host produce a heat-stable Sts phenotype (for survival of temperature shifts). Sts repressor mutants are heat sensitive when in supE or supF hosts and heat resistant when in Sup° hosts. Mutants with an Sts phenotype have amber mutations at one of three codons, Q179, Q187, or Q190. The Sts phenotype relates to the repressor size: in Sup° hosts sts repressors are shorter by seven, 10, or 18 amino acids compared to repressors in supE or supF hosts. The truncated form of the sts62-1 repressor, which lacks 18 residues (Q179–V196), binds Mu operator DNA more stably at 42° in vitro compared to its full-length counterpart (cts62 repressor). In addition to influencing temperature sensitivity, the C-terminus appears to control the susceptibility to in vivo Clp proteolysis by influencing the multimeric structure of repressor.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 521-534
Author(s):  
Peter M Garber ◽  
Jasper Rine

Abstract The MAD2-dependent spindle checkpoint blocks anaphase until all chromosomes have achieved successful bipolar attachment to the mitotic spindle. The DNA damage and DNA replication checkpoints block anaphase in response to DNA lesions that may include single-stranded DNA and stalled replication forks. Many of the same conditions that activate the DNA damage and DNA replication checkpoints also activated the spindle checkpoint. The mad2Δ mutation partially relieved the arrest responses of cells to mutations affecting the replication proteins Mcm3p and Pol1p. Thus a previously unrecognized aspect of spindle checkpoint function may be to protect cells from defects in DNA replication. Furthermore, in cells lacking either the DNA damage or the DNA replication checkpoints, the spindle checkpoint contributed to the arrest responses of cells to the DNA-damaging agent methyl methanesulfonate, the replication inhibitor hydroxyurea, and mutations affecting Mcm2p and Orc2p. Thus the spindle checkpoint was sensitive to a wider range of chromosomal perturbations than previously recognized. Finally, the DNA replication checkpoint did not contribute to the arrests of cells in response to mutations affecting ORC, Mcm proteins, or DNA polymerase δ. Thus the specificity of this checkpoint may be more limited than previously recognized.


Genetics ◽  
1998 ◽  
Vol 148 (3) ◽  
pp. 1055-1067
Author(s):  
Steven D Harris ◽  
Peter R Kraus

Abstract In Aspergillus nidulans, germinating conidia undergo multiple rounds of nuclear division before the formation of the first septum. Previous characterization of temperature-sensitive sepB and sepJ mutations showed that although they block septation, they also cause moderate defects in chromosomal DNA metabolism. Results presented here demonstrate that a variety of other perturbations of chromosomal DNA metabolism also delay septum formation, suggesting that this is a general cellular response to the presence of sublethal DNA damage. Genetic evidence is provided that suggests that high levels of cyclin-dependent kinase (cdk) activity are required for septation in A. nidulans. Consistent with this notion, the inhibition of septum formation triggered by defects in chromosomal DNA metabolism depends upon Tyr-15 phosphorylation of the mitotic cdk p34nimX. Moreover, this response also requires elements of the DNA damage checkpoint pathway. A model is proposed that suggests that the DNA damage checkpoint response represents one of multiple sensory inputs that modulates p34nimX activity to control the timing of septum formation.


Oncogene ◽  
2001 ◽  
Vol 20 (27) ◽  
pp. 3486-3496 ◽  
Author(s):  
Gary D Kao ◽  
W Gillies McKenna ◽  
Tim J Yen

Sign in / Sign up

Export Citation Format

Share Document