scholarly journals FIN13, a novel growth factor-inducible serine-threonine phosphatase which can inhibit cell cycle progression.

1997 ◽  
Vol 17 (9) ◽  
pp. 5485-5498 ◽  
Author(s):  
M A Guthridge ◽  
P Bellosta ◽  
N Tavoloni ◽  
C Basilico

We have identified a novel type 2C serine-threonine phosphatase, FIN13, whose expression is induced by fibroblast growth factor 4 and serum in late G1 phase. The protein encoded by FIN13 cDNA includes N- and C-terminal domains with significant homologies to type 2C phosphatases, a domain homologous to collagen, and an acidic domain. FIN13 expression predominates in proliferating tissues. Bacterially expressed FIN13 and FIN13 expressed in mammalian cells exhibit serine-threonine phosphatase activity, which requires Mn2+ and is insensitive to inhibition by okadaic acid. FIN13 is localized in the nuclei of transiently transfected cells. Cotransfection of FIN13-expressing plasmids with a plasmid that expresses the neomycin resistance gene inhibits the growth of drug-resistant colonies in NIH 3T3, HeLa and Rat-1 cells. In transiently transfected cells, FIN13 inhibits DNA synthesis and results in the accumulation of cells in G1 and early S phases. Similarly, the induction of expression of FIN13 under the control of a tetracycline-regulated promoter in NIH 3T3 cells leads to growth inhibition, with accumulation of cells in G1 and early S phases. Thus, overexpression and/or unregulated expression of FIN13 inhibits cell cycle progression, indicating that the physiological role of this phosphatase may be that of regulating the orderly progression of cells through the mitotic cycle by dephosphorylating specific substrates which are important for cell proliferation.

1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3327
Author(s):  
Zhixiang Wang

The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.


1993 ◽  
Vol 122 (2) ◽  
pp. 461-471 ◽  
Author(s):  
EK Han ◽  
TM Guadagno ◽  
SL Dalton ◽  
RK Assoian

We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-beta 1 overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-beta 1 induces anchorage-independent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-beta 1 fails to induce anchorage-independent growth). These results show that (a) adhesion and TGF-beta 1 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-beta 1 on anchorage-independent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-beta 1 requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-beta 1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage-independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence.


2000 ◽  
Vol 346 (1) ◽  
pp. 241-247 ◽  
Author(s):  
Jin-Sheng HUANG ◽  
Qing-Bai SHE ◽  
Karan S. CRILLY ◽  
Zoltan KISS

In serum-starved NIH 3T3 fibroblasts, ethanol (30-80 mM) promoted the effects of insulin and insulin-like growth factor I (IGF-I) on DNA synthesis in a Zn2+-dependent manner. Ethanol and Zn2+ were most effective when added shortly before or after insulin, indicating that all these agents facilitated cell cycle progression. The synergistic effects of ethanol, Zn2+ and insulin (or IGF-I) on DNA synthesis required 1.1-2.3 mM Ca2+, which seemed to act as the cell cycle initiator. When serum-starved cells were pretreated for 2 h with other cell cycle initiators such as 10% (v/v) serum, 50 ng/ml platelet-derived growth factor or 2 ng/ml fibroblast growth factor, subsequent co-treatments with 60 mM ethanol, Zn2+ and insulin for an 18 h period again synergistically increased DNA synthesis. Of the various signal transducing events examined, ethanol stimulated cellular uptake of 45Ca and it enhanced the stimulatory effects of insulin on p70 S6 kinase activity in a Zn2+-dependent manner. In contrast, ethanol inhibited insulin-induced activating phosphorylation of p42/p44 mitogen-activated protein kinases; these inhibitory ethanol effects were prevented by Zn2+. The results show that, in NIH 3T3 fibroblasts, ethanol can promote cell cycle progression in the presence of a cell cycle initiator as well as Zn2+ and insulin (or IGF-I).


1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184 ◽  
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


1995 ◽  
Vol 182 (2) ◽  
pp. 315-323 ◽  
Author(s):  
M Yasunaga ◽  
F Wang ◽  
T Kunisada ◽  
S Nishikawa ◽  
S Nishikawa

An important goal for the investigation of the proliferation of mammalian cells is to establish a fully defined condition for culturing them in vitro. Here, we report establishment of a fully defined culture condition that supports the primary culture of normal c-kit+IL-7 receptor (IL-7R)+ B precursor cells without the aid of stromal cell lines. This defined culture condition contains IL-7, the ligand for c-kit, transferrin, insulin, and bovine serum albumin as protein components. By using the cell lines derived from RAG2(-/-) mice, which do not differentiate into c-kit- stage, we have evaluated the role of each protein in the cell cycle progression of c-kit+IL-7R+ B precursor cells. Since B precursor cells can grow without insulin, c-kit remains a sole functional receptor tyrosine kinase for their growth. While both c-kit ligand (KL) and IL-7 are the requisite molecules for sustained proliferation of B precursor cells, each molecule plays distinct roles. IL-7 starvation results in prompt arrest of the cells at G1. An accumulation of the cells in the mitotic phase was also detected. Thus, the major role of IL-7 is to regulate the G1/S transition and the process of cytokinesis of B precursor cells. Although prolonged KL starvation over 48 h resulted in accumulation of G1 cells, its effect could not be detected within 24 h, which is long enough for all the cells to complete one cell cycle. This suggests that KL might be involved in the cell cycle progression of B precursor cells in a manner that its signal could still be effective in the one or two cell cycles that follow. Although molecular nature of the signals underlying the present observation awaits future investigation, the method described in this report would provide a useful model system for investigating the signaling pathways that are involved in the cell cycle progression of B precursor cells.


2009 ◽  
Vol 389 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Qi-lin Ma ◽  
Tian-lun Yang ◽  
Ji-ye Yin ◽  
Zhen-yu Peng ◽  
Min Yu ◽  
...  

2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


Sign in / Sign up

Export Citation Format

Share Document