scholarly journals Cell cycle control of c-kit+IL-7R+ B precursor cells by two distinct signals derived from IL-7 receptor and c-kit in a fully defined medium.

1995 ◽  
Vol 182 (2) ◽  
pp. 315-323 ◽  
Author(s):  
M Yasunaga ◽  
F Wang ◽  
T Kunisada ◽  
S Nishikawa ◽  
S Nishikawa

An important goal for the investigation of the proliferation of mammalian cells is to establish a fully defined condition for culturing them in vitro. Here, we report establishment of a fully defined culture condition that supports the primary culture of normal c-kit+IL-7 receptor (IL-7R)+ B precursor cells without the aid of stromal cell lines. This defined culture condition contains IL-7, the ligand for c-kit, transferrin, insulin, and bovine serum albumin as protein components. By using the cell lines derived from RAG2(-/-) mice, which do not differentiate into c-kit- stage, we have evaluated the role of each protein in the cell cycle progression of c-kit+IL-7R+ B precursor cells. Since B precursor cells can grow without insulin, c-kit remains a sole functional receptor tyrosine kinase for their growth. While both c-kit ligand (KL) and IL-7 are the requisite molecules for sustained proliferation of B precursor cells, each molecule plays distinct roles. IL-7 starvation results in prompt arrest of the cells at G1. An accumulation of the cells in the mitotic phase was also detected. Thus, the major role of IL-7 is to regulate the G1/S transition and the process of cytokinesis of B precursor cells. Although prolonged KL starvation over 48 h resulted in accumulation of G1 cells, its effect could not be detected within 24 h, which is long enough for all the cells to complete one cell cycle. This suggests that KL might be involved in the cell cycle progression of B precursor cells in a manner that its signal could still be effective in the one or two cell cycles that follow. Although molecular nature of the signals underlying the present observation awaits future investigation, the method described in this report would provide a useful model system for investigating the signaling pathways that are involved in the cell cycle progression of B precursor cells.

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Fung-Yu Huang ◽  
Danny Ka-Ho Wong ◽  
Wai-Kay Seto ◽  
Lung-Yi Mak ◽  
Tan-To Cheung ◽  
...  

AbstractHepatocellular carcinoma (HCC) is developed from uncontrolled cell growth after the malignant transformation of hepatocytes. The hepatitis B virus (HBV) X protein (HBx) has shown to induce cell cycle progression and hepatocarcinogenesis. A sub-fraction of HBx is localized in the mitochondria. Sirtuin 4 (SIRT4), a mitochondrial protein, has been demonstrated to play a tumor-suppressive role in many cancers, including HCC. However, little is known about the association between mitochondrial HBx and SIRT4 during hepatocarcinogenesis. We aimed to investigate the clinical significance and functional role of SIRT4 in HBV-related HCC. SIRT4 expression was significantly lower in the HCC tissues collected from 30 patients with HBV-related HCC than in normal liver tissues from control patients (p < 0.0001). TCGA data analysis indicated that SIRT4 expression was also lower in patients with HBV infection than in those without, and SIRT4 levels were positively associated with better patient survival. Similarly, HCC cell lines had lower SIRT4 expression than normal liver cell lines (all p < 0.01). Among the HCC cell lines, those harbored HBV had a lower SIRT4 expression than those without HBV (p < 0.0001). In vitro experiments revealed that stable HBx transfection suppressed SIRT4 expression in both HepG2 and Huh7 cells (both p < 0.001). Ectopic SIRT4 overexpression alone could induce cellular senescence through arresting cell-cycle progression at G2/M, and inducing cell apoptosis in HCC cells. Mechanistically, SIRT4 upregulated cell-cycle governing genes p16 and p21 protein expression, suppressed CyclinB1/Cdc2 and Cdc25c which normally induce cell-cycle progression, and suppressed survivin to induce apoptosis. Our findings demonstrate the interaction between HBV and SIRT4 in the context of HCC. SIRT4 involves in G2/M DNA damage checkpoint control and genomic stability in hepatocarcinogenesis, which could be targeted for future anticancer strategies.


1997 ◽  
Vol 17 (9) ◽  
pp. 5485-5498 ◽  
Author(s):  
M A Guthridge ◽  
P Bellosta ◽  
N Tavoloni ◽  
C Basilico

We have identified a novel type 2C serine-threonine phosphatase, FIN13, whose expression is induced by fibroblast growth factor 4 and serum in late G1 phase. The protein encoded by FIN13 cDNA includes N- and C-terminal domains with significant homologies to type 2C phosphatases, a domain homologous to collagen, and an acidic domain. FIN13 expression predominates in proliferating tissues. Bacterially expressed FIN13 and FIN13 expressed in mammalian cells exhibit serine-threonine phosphatase activity, which requires Mn2+ and is insensitive to inhibition by okadaic acid. FIN13 is localized in the nuclei of transiently transfected cells. Cotransfection of FIN13-expressing plasmids with a plasmid that expresses the neomycin resistance gene inhibits the growth of drug-resistant colonies in NIH 3T3, HeLa and Rat-1 cells. In transiently transfected cells, FIN13 inhibits DNA synthesis and results in the accumulation of cells in G1 and early S phases. Similarly, the induction of expression of FIN13 under the control of a tetracycline-regulated promoter in NIH 3T3 cells leads to growth inhibition, with accumulation of cells in G1 and early S phases. Thus, overexpression and/or unregulated expression of FIN13 inhibits cell cycle progression, indicating that the physiological role of this phosphatase may be that of regulating the orderly progression of cells through the mitotic cycle by dephosphorylating specific substrates which are important for cell proliferation.


2012 ◽  
Vol 24 (3) ◽  
pp. 159-167 ◽  
Author(s):  
I. Vigliano ◽  
L. Palamaro ◽  
G. Bianchino ◽  
A. Fusco ◽  
L. Vitiello ◽  
...  

2019 ◽  
Vol 26 (11) ◽  
pp. 800-818
Author(s):  
Zujian Xiong ◽  
Xuejun Li ◽  
Qi Yang

Pituitary Tumor Transforming Gene (PTTG) of human is known as a checkpoint gene in the middle and late stages of mitosis, and is also a proto-oncogene that promotes cell cycle progression. In the nucleus, PTTG works as securin in controlling the mid-term segregation of sister chromatids. Overexpression of PTTG, entering the nucleus with the help of PBF in pituitary adenomas, participates in the regulation of cell cycle, interferes with DNA repair, induces genetic instability, transactivates FGF-2 and VEGF and promotes angiogenesis and tumor invasion. Simultaneously, overexpression of PTTG induces tumor cell senescence through the DNA damage pathway, making pituitary adenoma possessing the potential self-limiting ability. To elucidate the mechanism of PTTG in the regulation of pituitary adenomas, we focus on both the positive and negative function of PTTG and find out key factors interacted with PTTG in pituitary adenomas. Furthermore, we discuss other possible mechanisms correlate with PTTG in pituitary adenoma initiation and development and the potential value of PTTG in clinical treatment.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Yiming He ◽  
Mingxi Gan ◽  
Yanan Wang ◽  
Tong Huang ◽  
Jianbin Wang ◽  
...  

AbstractGrainyhead-like 1 (GRHL1) is a transcription factor involved in embryonic development. However, little is known about the biological functions of GRHL1 in cancer. In this study, we found that GRHL1 was upregulated in non-small cell lung cancer (NSCLC) and correlated with poor survival of patients. GRHL1 overexpression promoted the proliferation of NSCLC cells and knocking down GRHL1 inhibited the proliferation. RNA sequencing showed that a series of cell cycle-related genes were altered when knocking down GRHL1. We further demonstrated that GRHL1 could regulate the expression of cell cycle-related genes by binding to the promoter regions and increasing the transcription of the target genes. Besides, we also found that EGF stimulation could activate GRHL1 and promoted its nuclear translocation. We identified the key phosphorylation site at Ser76 on GRHL1 that is regulated by the EGFR-ERK axis. Taken together, these findings elucidate a new function of GRHL1 on regulating the cell cycle progression and point out the potential role of GRHL1 as a drug target in NSCLC.


Oncogene ◽  
2000 ◽  
Vol 19 (4) ◽  
pp. 514-525 ◽  
Author(s):  
Torsten E Reichert ◽  
Shigeki Nagashima ◽  
Yoshiro Kashii ◽  
Joanna Stanson ◽  
Gui Gao ◽  
...  

1991 ◽  
Vol 11 (12) ◽  
pp. 6177-6184
Author(s):  
B Ducommun ◽  
P Brambilla ◽  
G Draetta

suc1+ encodes an essential cell cycle regulator of the fission yeast Schizosaccharomyces pombe. Its product, a 13-kDa protein, interacts with the Cdc2 protein kinase. Both positive and negative effects on cell cycle progression have been attributed to Suc1. To date, the exact mechanisms and the physiological role of the interaction between Suc1 and Cdc2 remain unclear. Here we have studied the molecular basis of this association. We show that Cdc2 can bind Suc1 or its mammalian homolog directly in the absence of any additional protein component. Using an alanine scanning mutagenesis method, we analyzed the interaction between Cdc2 and Suc1. We show that the integrity of several domains on the Cdc2 protein, including sites directly involved in catalytic activity, is required for binding to Suc1. Furthermore, Cdc2 mutant proteins unable to bind Suc1 (but able to bind cyclins) are nonfunctional when overexpressed in S. pombe, indicating that a specific interaction with Suc1 is required for Cdc2 function.


2007 ◽  
Vol 4 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Masaki Kawamura ◽  
Hirotake Kasai

We examined the effects of hemicellulase-treatedAgaricus blazei(AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth.


1987 ◽  
Vol 7 (10) ◽  
pp. 3846-3852 ◽  
Author(s):  
T Nakajima ◽  
M Masuda-Murata ◽  
E Hara ◽  
K Oda

Rat 3Y1 cell lines that express either adenovirus type 12 E1A 13S mRNA or 12S mRNA in response to dexamethasone treatment were established by introduction of recombinant vector DNA containing the E1A 13S- or 12S-mRNA cDNA placed downstream of the hormone-inducible promoter of mouse mammary tumor virus. These cell lines were growth arrested, and the induction of cell cycle progression was analyzed by flow cytometry after switch on of the cDNA by the addition of dexamethasone. The results indicate that the 13S- or 12S-mRNA product alone has the ability to cause progression of the cell cycle at a similar rate. The simultaneous addition of epidermal growth factor accelerated the rate of cell cycle progression in the transition from the G0/G1 phase to the S phase.


Sign in / Sign up

Export Citation Format

Share Document