scholarly journals Prohibitin Family Members Interact Genetically with Mitochondrial Inheritance Components in Saccharomyces cerevisiae

1998 ◽  
Vol 18 (7) ◽  
pp. 4043-4052 ◽  
Author(s):  
Karen H. Berger ◽  
Michael P. Yaffe

ABSTRACT Phb2p, a homolog of the tumor suppressor protein prohibitin, was identified in a genetic screen for suppressors of the loss of Mdm12p, a mitochondrial outer membrane protein required for normal mitochondrial morphology and inheritance in Saccharomyces cerevisiae. Phb2p and its homolog, prohibitin (Phb1p), were localized to the mitochondrial inner membrane and characterized as integral membrane proteins which depend on each other for their stability. In otherwise wild-type genetic backgrounds, null mutations in PHB1 andPHB2 did not confer any obvious phenotypes. However, loss of function of either PHB1 or PHB2 in cells with mitochondrial DNA deleted led to altered mitochondrial morphology, and phb1 or phb2 mutations were synthetically lethal when combined with a mutation in any of three mitochondrial inheritance components of the mitochondrial outer membrane, Mdm12p, Mdm10p, and Mmm1p. These results provide the first evidence of a role for prohibitin in mitochondrial inheritance and in the regulation of mitochondrial morphology.

FEBS Journal ◽  
2006 ◽  
Vol 273 (7) ◽  
pp. 1507-1515 ◽  
Author(s):  
Lena Burri ◽  
Katherine Vascotto ◽  
Ian E. Gentle ◽  
Nickie C. Chan ◽  
Traude Beilharz ◽  
...  

2003 ◽  
Vol 14 (6) ◽  
pp. 2342-2356 ◽  
Author(s):  
Hiromi Sesaki ◽  
Sheryl M. Southard ◽  
Michael P. Yaffe ◽  
Robert E. Jensen

In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.


1999 ◽  
Vol 144 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Kelly A. Shepard ◽  
Michael P. Yaffe

The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37°C, while loss of the mitochondrial genome occurred after 4–24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.


1994 ◽  
Vol 126 (6) ◽  
pp. 1361-1373 ◽  
Author(s):  
L F Sogo ◽  
M P Yaffe

Yeast cells with the mdm10 mutation possess giant spherical mitochondria and are defective for mitochondrial inheritance. The giant mitochondria display classical features of mitochondrial ultrastructure, yet they appear incapable of movement or division. Genetic analysis indicated that the mutant phenotypes resulted from a single nuclear mutation, and the isolated MDM10 gene restored wild-type mitochondrial distribution and morphology when introduced into mutant cells. MDM10 encodes a protein of 56.2 kD located in the mitochondrial outer membrane. Depletion of Mdm10p from cells led to a condensation of normally extended, tubular mitochondria into giant spheres, and reexpression of the protein resulted in a rapid restoration of normal mitochondrial morphology. These results demonstrate that Mdm10p can control mitochondrial morphology, and that it plays a role in the inheritance of mitochondria.


Genetics ◽  
1993 ◽  
Vol 135 (2) ◽  
pp. 321-326 ◽  
Author(s):  
H Mitsuzawa

Abstract The Saccharomyces cerevisiae strain P-28-24C, from which cAMP requiring mutants derived, responded to exogenously added cAMP. Upon the addition of cAMP, this strain showed phenotypes shared by mutants with elevated activity of the cAMP pathway. Genetic analysis involving serial crosses of this strain to a strain with another genetic background revealed that the responsiveness to cAMP results from naturally occurring loss-of-function alleles of PDE1 and PDE2, which encode low and high affinity cAMP phosphodiesterases, respectively. In addition, P-28-24C was found to carry a mutation conferring slow growth that lies in CYR1, which encodes adenylate cyclase, and the slow growth phenotype caused by the cyr1 mutation was suppressed by the pde2 mutation. Therefore P-28-24C is fortuitously a pde1 pde2 cyr1 triple mutant. Responsiveness to cAMP conferred by pde mutations suggests that S. cerevisiae cells are permeable to cAMP to some extent and that the apparent absence of effect of exogenously added cAMP on wild-type cells is due to immediate degradation by cAMP phosphodiesterases.


2002 ◽  
Vol 80 (5) ◽  
pp. 551-562 ◽  
Author(s):  
Denice C Bay ◽  
Deborah A Court

Voltage-dependent anion-selective channels (VDAC), also known as mitochondrial porins, are key regulators of metabolite flow across the mitochondrial outer membrane. Porins from a wide variety of organisms share remarkably similar electrophysiological properties, in spite of considerable sequence dissimilarity, indicating that they share a common structure. Based on primary sequence considerations, analogy with bacterial porins, and circular dichroism analysis, it is agreed that VDAC spans the outer membrane as a β-barrel. However, the residues that form the antiparallel β-strands comprising this barrel remain unknown. Various predictive methods, largely based on the known structures of bacterial β-barrels, have been applied to the primary sequences of VDAC. Refinement and confirmation of these predictions have developed through numerous investigations of wild-type and variant porins, both in mitochondria and in artificial membranes. These experiments have involved VDAC from several sources, precluding the generation of a unified model. Herein, using the Neurospora VDAC sequence as a template, the published structural information and predictions have been reassessed to delineate a model that satisfies most of the available data.Key words: VDAC, mitochondrial porin, β-barrel.


2012 ◽  
Vol 23 (20) ◽  
pp. 3948-3956 ◽  
Author(s):  
Maria Bohnert ◽  
Lena-Sophie Wenz ◽  
Ralf M. Zerbes ◽  
Susanne E. Horvath ◽  
David A. Stroud ◽  
...  

Mitochondria contain two membranes, the outer membrane and the inner membrane with folded cristae. The mitochondrial inner membrane organizing system (MINOS) is a large protein complex required for maintaining inner membrane architecture. MINOS interacts with both preprotein transport machineries of the outer membrane, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It is unknown, however, whether MINOS plays a role in the biogenesis of outer membrane proteins. We have dissected the interaction of MINOS with TOM and SAM and report that MINOS binds to both translocases independently. MINOS binds to the SAM complex via the conserved polypeptide transport–associated domain of Sam50. Mitochondria lacking mitofilin, the large core subunit of MINOS, are impaired in the biogenesis of β-barrel proteins of the outer membrane, whereas mutant mitochondria lacking any of the other five MINOS subunits import β-barrel proteins in a manner similar to wild-type mitochondria. We show that mitofilin is required at an early stage of β-barrel biogenesis that includes the initial translocation through the TOM complex. We conclude that MINOS interacts with TOM and SAM independently and that the core subunit mitofilin is involved in biogenesis of outer membrane β-barrel proteins.


2006 ◽  
Vol 173 (5) ◽  
pp. 645-650 ◽  
Author(s):  
Mafalda Escobar-Henriques ◽  
Benedikt Westermann ◽  
Thomas Langer

Mitochondrial morphology depends on balanced fusion and fission events. A central component of the mitochondrial fusion apparatus is the conserved GTPase Fzo1 in the outer membrane of mitochondria. Mdm30, an F-box protein required for mitochondrial fusion in vegetatively growing cells, affects the cellular Fzo1 concentration in an unknown manner. We demonstrate that mitochondrial fusion requires a tight control of Fzo1 levels, which is ensured by Fzo1 turnover. Mdm30 binds to Fzo1 and, dependent on its F-box, mediates proteolysis of Fzo1. Unexpectedly, degradation occurs along a novel proteolytic pathway not involving ubiquitylation, Skp1–Cdc53–F-box (SCF) E3 ubiquitin ligase complexes, or 26S proteasomes, indicating a novel function of an F-box protein. This contrasts to the ubiquitin- and proteasome-dependent turnover of Fzo1 in α-factor–arrested yeast cells. Our results therefore reveal not only a critical role of Fzo1 degradation for mitochondrial fusion in vegetatively growing cells but also the existence of two distinct proteolytic pathways for the turnover of mitochondrial outer membrane proteins.


2002 ◽  
Vol 159 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Damien Arnoult ◽  
Philippe Parone ◽  
Jean-Claude Martinou ◽  
Bruno Antonsson ◽  
Jérôme Estaquier ◽  
...  

Mitochondrial outer membrane permeabilization by proapoptotic Bcl-2 family proteins, such as Bax, plays a crucial role in apoptosis induction. However, whether this only causes the intracytosolic release of inducers of caspase-dependent death, such as cytochrome c, or also of caspase-independent death, such as apoptosis-inducing factor (AIF) remains unknown. Here, we show that on isolated mitochondria, Bax causes the release of cytochrome c, but not of AIF, and the association of AIF with the mitochondrial inner membrane provides a simple explanation for its lack of release upon Bax-mediated outer membrane permeabilization. In cells overexpressing Bax or treated either with the Bax- or Bak-dependent proapoptotic drugs staurosporine or actinomycin D, or with hydrogen peroxide, caspase inhibitors did not affect the intracytosolic translocation of cytochrome c, but prevented that of AIF. These results provide a paradigm for mitochondria-dependent death pathways in which AIF cannot substitute for caspase executioners because its intracytosolic release occurs downstream of that of cytochrome c.


Sign in / Sign up

Export Citation Format

Share Document