scholarly journals Physical and Functional Interactions between Cellular Retinoic Acid Binding Protein II and the Retinoic Acid-Dependent Nuclear Complex

1999 ◽  
Vol 19 (10) ◽  
pp. 7158-7167 ◽  
Author(s):  
Laurent Delva ◽  
Jean-Noël Bastie ◽  
Cécile Rochette-Egly ◽  
Radhia Kraïba ◽  
Nicole Balitrand ◽  
...  

ABSTRACT Two sorts of proteins bind to, and mediate the developmental and homeostatic effects of, retinoic acid (RA): the RAR and RXR nuclear receptors, which act as ligand-dependent transcriptional regulators, and the cellular RA binding proteins (CRABPI and CRABPII). CRABPs are generally known to be implicated in the synthesis, degradation, and control of steady-state levels of RA, yet previous and recent data have indicated that they could play a role in the control of gene expression. Here we show for the first time that, both in vitro and in vivo, CRABPII is associated with RARα and RXRα in a ligand-independent manner in mammalian cells (HL-60, NB-4, and MCF-7). In the nucleus, this protein complex binds the RXR-RAR-specific response element of an RA target gene (RARE-DR5). Moreover, in the presence of retinoids that bind both the nuclear receptors and CRABPII, enhancement of transactivation by RXRα-RARα heterodimers is observed in the presence of CRABPII. Thus, CRABPII appears to be a novel transcriptional regulator involved in RA signaling.

2007 ◽  
Vol 192 (3) ◽  
pp. 539-551 ◽  
Author(s):  
Kyuyong Han ◽  
Haengseok Song ◽  
Irene Moon ◽  
Robert Augustin ◽  
Kelle Moley ◽  
...  

Various nuclear receptors form dimers to activate target genes via specific response elements located within promoters or enhancers. Retinoid X receptor (RXR) serves as a dimerization partner for many nuclear receptors including retinoic acid receptor (RAR) and peroxisome proliferator-activated receptor (PPAR). Dimers show differential preference towards directly repeated response elements with 1–5 nucleotide spacing, and direct repeat 1 (DR1) is a promiscuous element which recruits RAR/RXR, RXR/RXR, and PPAR/RXR in vitro. In the present investigation, we report identification of a novel RAR/RXR target gene which is regulated by DR1s in the promoter region. This gene, namely spermatocyte-specific marker (Ssm), recruits all the three combinations of nuclear receptors in vitro, but in vivo regulation is observed by trans-retinoic acid-activated RAR/RXR dimer. Indeed, chromatin immunoprecipitation experiment demonstrates binding of RARβ and RXRα in the promoter region of the Ssm. Interestingly, expression of Ssm is almost exclusively observed in spermatocytes in the adult mouse testis, where RA signaling is known to regulate developmental program of male germ cells. The results show that Ssm is a RAR/RXR target gene uniquely using DR1 and exhibits stage-specific expression in the mouse testis with potential function in later stages of spermatogenesis. This finding exemplifies usage of DR1s as retinoic acid response element (RARE) under a specific in vivo context.


2008 ◽  
Vol 410 (2) ◽  
pp. 319-330 ◽  
Author(s):  
You Lee Son ◽  
Ok Gu Park ◽  
Gwang Sik Kim ◽  
Jae Woon Lee ◽  
Young Chul Lee

ASC-2 (activating signal co-integrator-2) is a transcriptional co-activator that mediates the transactivation of NRs (nuclear receptors) via direct interactions with these receptors. ASC-2 contains two separate NR-interaction domains harbouring a core signature motif, LXXLL (where X is any amino acid), named the NR box. Although the first NR box (NR box-1) of ASC-2 interacts with many different NRs, the second NR box (NR box-2) specifically interacts with only LXR (liver X receptor), whose transactivation in vivo requires heterodimerization with RXR (retinoid X receptor). Interestingly, RXR has been shown to enhance the LXR transactivation, even in the absence of LXR ligand via a unique mechanism of allosteric regulation. In the present study we demonstrate that LXR binding to an ASC-2 fragment containing NR box-2 (Co4aN) is enhanced by RXR and even further by liganded RXR. We also identified specific residues in Co4aN involved in its interaction with LXR that were also required for the ASC-2-mediated transactivation of LXR in mammalian cells. Using these mutants, we found that the Co4aN–LXR interaction surface is not altered by the presence of RXR and RXR ligand and that the Ser1490 residue is the critical determinant for the LXR-specific interaction of Co4aN. Notably the NR box-2, but not the NR box-1, is essential for ASC-2-mediated transactivation of LXR in vivo and for the interaction between LXR–RXR and ASC-2 in vitro. These results indicate that RXR does not interact directly with NR box-1 of ASC-2, but functions as an allosteric activator of LXR binding to NR box-2 of ASC-2.


2001 ◽  
Vol 21 (8) ◽  
pp. 2826-2837 ◽  
Author(s):  
Arun Venkatesan ◽  
Asim Dasgupta

ABSTRACT We report here a novel fluorescent protein-based screen to identify small, synthetic internal ribosome entry site (IRES) elements in vivo. A library of bicistronic plasmids encoding the enhanced blue and green fluorescent proteins (EBFP and EGFP) separated by randomized 50-nucleotide-long sequences was amplified in bacteria and delivered into mammalian cells via protoplast fusion. Cells that received functional IRES elements were isolated using the EBFP and EGFP reporters and fluorescence-activated cell sorting, and several small IRES elements were identified. Two of these elements were subsequently shown to possess IRES activity comparable to that of a variant of the encephalomyocarditis virus IRES element in a context-independent manner both in vitro and in vivo, and these elements functioned in multiple cell types. Although no sequence or structural homology was apparent between the synthetic IRES elements and known viral and cellular IRES elements, the two synthetic IRES elements specifically blocked poliovirus (PV) IRES-mediated translation in vitro. Competitive protein-binding experiments suggested that these IRES elements compete with PV IRES-mediated translation by utilizing some of the same factors as the PV IRES to direct translation. The utility of this fluorescent protein-based screen in identifying IRES elements with improved activity as well as in probing the mechanism of IRES-mediated translation is discussed.


2019 ◽  
Author(s):  
Beate Kaufmann ◽  
Or Willinger ◽  
Noa Eden ◽  
Lisa Kermas ◽  
Leon Anavy ◽  
...  

SummaryNature provides a rich toolbox of dynamic nucleic acid structures that are widespread in cells and affect multiple biological processes1. Recently, non-canonical structures gained renewed scientific and biotechnological interest2,3. One particularly intriguing form of such structures are triplexes4 in which a single-stranded nucleic acid molecule interacts via Hoogsteen bonds with a DNA/RNA double helix5. Despite extensive research in vitro6–9, the underlying rules for triplex formation remain debated and evidence for triplexes in vivo is circumstantial10–12. Here, we demonstrate the development of a deep-sequencing platform termed Triplex-Seq to systematically refine the DNA triplex code and identify high affinity triplex forming oligo (TFO) variants. We identified a preference for short G-rich motifs using an oligo-library with a mix of all four bases. These high-information content motifs formed specific high-affinity triplexes in a pH-independent manner and stability was increased with G-rich double-stranded molecules. We then conjugated one high-affinity and one low-affinity variant to a VP48 peptide and studied these synthetic biomolecules in mammalian cells. Using these peptide-oligo constructs (POCs), we demonstrated possible triplex-induced down-regulation activity in 544 differentially expressed genes. Our results show that deep-sequencing platforms can substantially expand our understanding of triplex binding rules, which in turn has led to the development of a functional non-genetically encoded regulatory tool for in vivo applications.


2018 ◽  
Author(s):  
Yale S. Michaels ◽  
Mike B. Barnkob ◽  
Hector Barbosa ◽  
Toni A. Baeumler ◽  
Mary K. Thompson ◽  
...  

ABSTRACTPrecise, analogue regulation of gene expression is critical for development, homeostasis and regeneration in mammals. In contrast, widely employed experimental and therapeutic approaches such as knock-in/out strategies are more suitable for binary control of gene activity, while RNA interference (RNAi) can lead to pervasive off-target effects and unpredictable levels of repression. Here we report on a method for the precise control of gene expression levels in mammalian cells based on engineered, synthetic microRNA response elements (MREs). To develop this system, we established a high-throughput sequencing approach for measuring the efficacy of thousands of miR-17 MRE variants. This allowed us to create a library of microRNA silencing-mediated fine-tuners (miSFITs) of varying strength that can be employed to control the expression of user specified genes. To demonstrate the value of this technology, we used a panel of miSFITs to tune the expression of a peptide antigen in a mouse melanoma model. This analysis revealed that antigen expression level is a key determinant of the anti-tumour immune response in vitro and in vivo. miSFITs are a powerful tool for modulating gene expression output levels with applications in research and cellular engineering.


1996 ◽  
Vol 16 (11) ◽  
pp. 6029-6036 ◽  
Author(s):  
F L'Horset ◽  
S Dauvois ◽  
D M Heery ◽  
V Cavaillès ◽  
M G Parker

We have characterized two distinct binding sites, called site 1 and site 2, in the nuclear protein RIP-140 which interact with the ligand binding domain of the estrogen receptor both in solution and when the receptor is bound to DNA. Both sites are capable of independently interacting with other nuclear receptors, including the thyroid hormone and retinoic acid receptors, but they are not identical since the interaction with retinoid X receptor is mediated primarily by site 1. The interaction is enhanced by agonists but not by antagonists, and the in vitro binding activities to a number of mutant receptors correlate with their abilities to stimulate transcription in vivo. When RIP-140 is fused to heterologous DNA binding domains, it is able to stimulate the transcription of reporter genes in both yeast and mammalian cells. Thus, RIP-140 is likely to function as a bridging protein between receptors and the basal transcription machinery and thereby stimulate the transcription of target genes.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Author(s):  
Gustav Ofosu

Platinum-thymine has been found to be a potent antitumor agent, which is quite soluble in water, and lack nephrotoxicity as the dose-limiting factor. The drug has been shown to interact with DNA and inhibits DNA, RNA and protein synthesis in mammalian cells in vitro. This investigation was undertaken to elucidate the cytotoxic effects of piatinum-thymine on sarcoma-180 cells in vitro ultrastructurally, Sarcoma-180 tumor bearing mice were treated with intraperitoneal injection of platinum-thymine 40mg/kg. A concentration of 60μg/ml dose of platinum-thymine was used in in vitro experiments. Treatments were at varying time intervals of 3, 7 and 21 days for in vivo experiments, and 30, 60 and 120 min., 6, 12, and 24th in vitro. Controls were not treated with platinum-thymine.Electron microscopic analyses of the treated cells in vivo and in vitro showed drastic cytotoxic effect.


2018 ◽  
Author(s):  
Noor H. Dashti ◽  
Rufika S. Abidin ◽  
Frank Sainsbury

Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages have been developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both <i>in vitro</i> and <i>in vivo</i> cell engineering. However, there is a lack of platforms in bionanotechnology that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for <i>in vivo</i> self-sorting of cargo-linked capsomeres of the Murine polyomavirus (MPyV) major coat protein that enables controlled encapsidation of guest proteins by <i>in vitro</i> self-assembly. Using Förster resonance energy transfer (FRET) we demonstrate the flexibility in this system to support co-encapsidation of multiple proteins. Complementing these ensemble measurements with single particle analysis by super-resolution microscopy shows that the stochastic nature of co-encapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable co-encapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.


2020 ◽  
Vol 21 ◽  
Author(s):  
Boniface Pone ◽  
Ferreira Igne Elizabeth

: Neglected tropical diseases (NTDs) are responsible for over 500,000 deaths annually and are characterized by multiple disabilities. Leishmaniasis and Chagas disease are among the most severe NTDs, and are caused by the Leishmania sp, and Trypanosoma cruzi, respectively. Glucantime, pentamidine and miltefosine are commonly used to treat leishmaniasis, whereas nifurtimox, benznidazole are current treatments for Chagas disease. However, these treatments are associated with drug resistance, and severe side effects. Hence, the development of synthetic products, especially those containing N02, F, or Cl, which chemical groups are known to improve the biological activity. The present work summarizes the information on the antileishmanial and antitrypanosomal activity of nitro-, chloro-, and fluoro-synthetic derivatives. Scientific publications referring to halogenated derivatives in relation to antileishmanial and antitrypanosomal activities were hand searched in databases such as SciFinder, Wiley, Science Direct, PubMed, ACS, Springer, Scielo, and so on. According to the literature information, more than 90 compounds were predicted as lead molecules with reference to their IC50/EC50 values in in vitro studies. It is worth to mention that only active compounds with known cytotoxic effects against mammalian cells were considered in the present study. The observed activity was attributed to the presence of nitro-, fluoro- and chloro-groups in the compound backbone. All in all, nitro and h0alogenated derivatives are active antileishmanial and antitrypanosomal compounds and can serve as baseline for the development of new drugs against leishmaniasis and Chagas disease. However, efforts on in vitro and in vivo toxicity studies of the active synthetic compounds is still needed. Pharmacokinetic studies, and the mechanism of action of the promising compounds need to be explored. The use of new catalysts and chemical transformation can afford unexplored halogenated compounds with improved antileishmanial and antitrypanosomal activity.


Sign in / Sign up

Export Citation Format

Share Document