scholarly journals Mechanistic Basis for Coding End Sequence Effects in the Initiation of V(D)J Recombination

1999 ◽  
Vol 19 (12) ◽  
pp. 8094-8102 ◽  
Author(s):  
Kefei Yu ◽  
Michael R. Lieber

ABSTRACT V(D)J recombination is directed by recombination signal sequences. However, the flanking coding end sequence can markedly affect the frequency of the initiation of V(D)J recombination in vivo. Here we demonstrate that the coding end sequence effect can be qualitatively and quantitatively recapitulated in vitro with purified RAG proteins. We find that coding end sequence specifically affects the nicking step, which is the first biochemical step in RAG-mediated cleavage. The subsequent hairpin formation step is not affected by the coding end sequence. Furthermore, the coding end sequence effect can be ablated by prenicking the substrate, indicating that the coding end effect is specific to the nicking step. In reactions in which both 12- and 23-substrates are present, a suboptimal coding end sequence on one signal can slow down hairpin formation at the partner signal, a result consistent with models in which coordination between the signals occurs at the hairpin formation step. The coding end sequence effect on nicking and the coupling of the 12- and 23-substrates explains how hairpin formation can be rate limiting for some 12/23 pairs, whereas nicking can be rate limiting when low-efficiency coding end sequences are involved.

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi24-vi25
Author(s):  
Lata Adnani ◽  
Brian Meehan ◽  
Jordan Kassouf ◽  
Cristiana Spinelli ◽  
Nadim Tawil ◽  
...  

Abstract Glioblastoma multiforme (GBM) represents the most frequent and lethal form of brain tumors originating from glioma stem cells (GSCs). GBM remains lethal because the rate limiting patho-mechanisms remain poorly understood. In this regard, few limitations involve the diversity 'between' cellular states and the molecular/cellular complexity 'within' the tumour mass. Using cell based- and mouse- models, we explored extracellular vesicle (EV) mediated interactions between cancer and stromal cells impacting phenotypes of GSCs as a function of their molecular subtype. EVs are spherical membrane structures that cells release to expel different molecular cargo (lipids, proteins, RNA, DNA), which can be transported across a distance in the brain and taken up by various ‘recipient’ cells resulting in reprogramming of the recipient cell's content and function. In vivo, GSCs altered their pattern of NOTCH signalling and molecular phenotype as a function of proximity to non-transformed host cells in the brain. In vitro stromal EVs altered GSC sphere forming capacity, proteome and expression of mesenchymal markers. Thus, EV mediated tumour-stromal interactions could represent a biological switch and a novel targeting point in the biology of GBM.


1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


Antioxidants ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 153 ◽  
Author(s):  
Keisuke Yoshida ◽  
Toru Hisabori

Thiol-based redox regulation ensures light-responsive control of chloroplast functions. Light-derived signal is transferred in the form of reducing power from the photosynthetic electron transport chain to several redox-sensitive target proteins. Two types of protein, ferredoxin-thioredoxin reductase (FTR) and thioredoxin (Trx), are well recognized as the mediators of reducing power. However, it remains unclear which step in a series of redox-relay reactions is the critical bottleneck for determining the rate of target protein reduction. To address this, the redox behaviors of FTR, Trx, and target proteins were extensively characterized in vitro and in vivo. The FTR/Trx redox cascade was reconstituted in vitro using recombinant proteins from Arabidopsis. On the basis of this assay, we found that the FTR catalytic subunit and f-type Trx are rapidly reduced after the drive of reducing power transfer, irrespective of the presence or absence of their downstream target proteins. By contrast, three target proteins, fructose 1,6-bisphosphatase (FBPase), sedoheptulose 1,7-bisphosphatase (SBPase), and Rubisco activase (RCA) showed different reduction patterns; in particular, SBPase was reduced at a low rate. The in vivo study using Arabidopsis plants showed that the Trx family is commonly and rapidly reduced upon high light irradiation, whereas FBPase, SBPase, and RCA are differentially and slowly reduced. Both of these biochemical and physiological findings suggest that reducing power transfer from Trx to its target proteins is a rate-limiting step for chloroplast redox regulation, conferring distinct light-responsive redox behaviors on each of the targets.


2015 ◽  
Vol 10 (3) ◽  
pp. 548 ◽  
Author(s):  
Musaddique Hussain ◽  
Shahid Masood Raza ◽  
Khalid Hussain Janbaz

<p class="Abstract"><em>In vitro</em> and<em> in vivo</em> studies were undertaken to evaluate the pharmacologically mechanistic background to validate the traditional uses of <em>Rumex acetosa</em> in the treatment of emesis and gastrointestinal motility disorders such as constipation and diarrhea. In rabbit jejunum preparation, methanolic extract of <em>R. acetosa</em> (0.01-1.0 mg/mL) caused a transient spasmogenic effect, followed by the spasmolytic effect (3-10 mg/mL). In presence of atropine, spasmogenic effect was blocked while spasmolytic effect was emerged, suggesting that spasmogenic effect was mediated through activation of muscarinic receptors. Extract inhibited the K<sup>+ </sup>(80 mM)-induced contraction, suggesting Ca<sup>2+</sup>-cha-nnel blockade, which was further confirmed when pretreatment of tissue with extract shifted the Ca<sup>2+ </sup>concentration-response curves to the right, similarly as verapamil.<em> R. acetosa</em> also exhibited the significant antiemetic activity (p&lt;0.05) against different emetogenic stimuli, when compared with chlorpromazine. This study confirms the presence of gut modulator (spasmogenic and spasmolytic) and antiemetic activates, validating its traditional uses.</p><p> </p>


1971 ◽  
Vol 122 (3) ◽  
pp. 267-276 ◽  
Author(s):  
D. C. N. Earl ◽  
Susan T. Hindley

1. At 3 min after an intravenous injection of radioactive amino acids into the rat, the bulk of radioactivity associated with liver polyribosomes can be interpreted as growing peptides. 2. In an attempt to identify the rate-limiting step of protein synthesis in vivo and in vitro, use was made of the action of puromycin at 0°C, in releasing growing peptides only from the donor site, to study the distribution of growing peptides between the donor and acceptor sites. 3. Evidence is presented that all growing peptides in a population of liver polyribosomes labelled in vivo are similarly distributed between the donor and acceptor sites, and that the proportion released by puromycin is not an artifact of methodology. 4. The proportion released by puromycin is about 50% for both liver and muscle polyribosomes labelled in vivo, suggesting that neither the availability nor binding of aminoacyl-tRNA nor peptide bond synthesis nor translocation can limit the rate of protein synthesis in vivo. Attempts to alter this by starvation, hypophysectomy, growth hormone, alloxan, insulin and partial hepatectomy were unsuccessful. 5. Growing peptides on liver polyribosomes labelled in a cell-free system in vitro or by incubating hemidiaphragms in vitro were largely in the donor site, suggesting that either the availability or binding of aminoacyl-tRNA, or peptide bond synthesis, must be rate limiting in vitro and that the rate-limiting step differs from that in vivo. 6. Neither in vivo nor in the hemidiaphragm system in vitro was a correlation found between the proportion of growing peptides in the donor site and changes in the rate of incorporation of radioactivity into protein. This could indicate that the intracellular concentration of amino acids or aminoacyl-tRNA limits the rate of protein synthesis and that the increased incorporation results from a rise to a higher but still suboptimum concentration.


2013 ◽  
Vol 220 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Dang-Dang Li ◽  
Ying-Jie Gao ◽  
Xue-Chao Tian ◽  
Zhan-Qing Yang ◽  
Hang Cao ◽  
...  

Tryptophan 2,3-dioxygenase (Tdo2) is a rate-limiting enzyme which directs the conversion of tryptophan to kynurenine. The aim of this study was to examine the expression and regulation of Tdo2 in mouse uterus during decidualization. Tdo2 mRNA was mainly expressed in the decidua on days 6–8 of pregnancy. By real-time PCR, a high level of Tdo2 expression was observed in the uteri from days 6 to 8 of pregnancy, although Tdo2 expression was observed on days 1–8. Simultaneously, Tdo2 mRNA was also detected under in vivo and in vitro artificial decidualization. Estrogen, progesterone, and 8-bromoadenosine-cAMP could induce the expression of Tdo2 in the ovariectomized mouse uterus and uterine stromal cells. Tdo2 could regulate cell proliferation and stimulate the expression of decidual marker Dtprp in the uterine stromal cells and decidual cells. Overexpression of Tdo2 could upregulate the expression of Ahr, Cox2, and Vegf genes in uterine stromal cells, while Tdo2 inhibitor 680C91 could downregulate the expression of Cox2 and Vegf genes in uterine decidual cells. These data indicate that Tdo2 may play an important role during mouse decidualization and be regulated by estrogen, progesterone, and cAMP.


2018 ◽  
Vol 115 (44) ◽  
pp. E10370-E10378 ◽  
Author(s):  
Miranda L. Bernhardt ◽  
Paula Stein ◽  
Ingrid Carvacho ◽  
Christopher Krapp ◽  
Goli Ardestani ◽  
...  

The success of mammalian development following fertilization depends on a series of transient increases in egg cytoplasmic Ca2+, referred to as Ca2+ oscillations. Maintenance of these oscillations requires Ca2+ influx across the plasma membrane, which is mediated in part by T-type, CaV3.2 channels. Here we show using genetic mouse models that TRPM7 channels are required to support this Ca2+ influx. Eggs lacking both TRPM7 and CaV3.2 stop oscillating prematurely, indicating that together they are responsible for the majority of Ca2+ influx immediately following fertilization. Fertilized eggs lacking both channels also frequently display delayed resumption of Ca2+ oscillations, which appears to require sperm–egg fusion. TRPM7 and CaV3.2 channels almost completely account for Ca2+ influx observed following store depletion, a process previously attributed to canonical store-operated Ca2+ entry mediated by STIM/ORAI interactions. TRPM7 serves as a membrane sensor of extracellular Mg2+ and Ca2+ concentrations and mediates the effects of these ions on Ca2+ oscillation frequency. When bred to wild-type males, female mice carrying eggs lacking TRPM7 and CaV3.2 are subfertile, and their offspring have increased variance in postnatal weight. These in vivo findings confirm previous observations linking in vitro experimental alterations in Ca2+ oscillatory patterns with developmental potential and offspring growth. The identification of TRPM7 and CaV3.2 as key mediators of Ca2+ influx following fertilization provides a mechanistic basis for the rational design of culture media that optimize developmental potential in research animals, domestic animals, and humans.


2019 ◽  
Author(s):  
T. Reid Alderson ◽  
Elias Adriaenssens ◽  
Bob Asselbergh ◽  
Iva Pritišanac ◽  
Heidi Y. Gastall ◽  
...  

HSP27 (HSPB1) is a systemically expressed human small heat-shock protein that forms large, dynamic oligomers and functions in various aspects of cellular homeostasis. Mutations in HSP27 cause Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. A particularly severe form of the disease is triggered by the P182L mutation within the highly conserved IxI/V motif of HSP27. Here, we observed that the P182L variant of HSP27 lacks the ability to prevent the aggregation of client proteins and formed significantly larger oligomers both in vitro and in vivo. NMR spectroscopy revealed that the P182L IxI/V motif binds its α-crystallin domain with significantly lower association rate, and thus affinity, rendering the binding site more available for other interactors. We identified 22 IxI/V-containing proteins that are known to interact with HSP27 and could therefore bind with enhanced affinity to the P182L variant. We validated this hypothesis through co-immunoprecipitation experiments, revealing that the IxI/V motif-bearing co-chaperone BAG3 indeed binds with higher affinity to the P182L variant. Our results provide a mechanistic basis for the impact of the P182L mutation on HSP27, and highlight the general importance of the IxI/V motif and its role in protein-protein interaction networks.


2020 ◽  
Author(s):  
Evelynne Paris-Oller ◽  
Sergio Navarro-Serna ◽  
Cristina Soriano-Úbeda ◽  
Jordana Sena Lopes ◽  
Carmen Matas ◽  
...  

Abstract Background: In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits.Results: The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group.Conclusions: The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring.


2019 ◽  
Vol 71 (3) ◽  
pp. 837-847
Author(s):  
J.F.W. Sprícigo ◽  
L.O. Leme ◽  
A.L. Guimarães ◽  
J.C. Oliveira Neto ◽  
P.C.P. Silva ◽  
...  

ABSTRACT Piau porcine blastocysts were submitted to MALDI-TOF to identify the main phospholipids (PL). After that, in vivo blastocysts (D6) were vitrified (n=52), non-vitrified were used as control (n=42). After warming, blastocysts were in vitro cultured to assess re-expansion and hatching at 24 and 48 hours. Finally, at 48 hours, hatched blastocysts were submitted to RT-qPCR searching for BCL2A1, BAK, BAX and CASP3 genes. For MALDI-TOF, the ion intensity was expressed in arbitrary units. Blastocyst development was compared by Qui-square (P< 0.05). Among the most representative PL was the phosphatidylcholine [PC (32:0) + H]+; [PC (34:1) + H]+ and [PC (36:4) + H]+. Beyond the PL, MALDI revealed some triglycerides (TG), including PPL (50:2) + Na+, PPO (50:1) + Na+, PLO (52:3) + Na+ and POO (52:2) + Na. Re-expansion did not differ (P> 0.05) between fresh or vitrified blastocysts at 24 (33.3%; 32.7%) or 48 hours (2.4%; 13.5%). Hatching rates were higher (P< 0.05) for fresh compared to vitrified at 24 (66.7%; 15.4%) and 48 hours (97.6%; 36.0%). BAX was overexpressed (P< 0.05) after vitrification. In conclusion, Piau blastocysts can be cryopreserved by Cryotop. This study also demonstrated that the apoptotic pathway may be responsible for the low efficiency of porcine embryo cryopreservation.


Sign in / Sign up

Export Citation Format

Share Document