scholarly journals Reproductive fluids, used for the in vitro production of pig embryos, result in healthy offspring and avoid aberrant placental expression of PEG3 and LUM.

2020 ◽  
Author(s):  
Evelynne Paris-Oller ◽  
Sergio Navarro-Serna ◽  
Cristina Soriano-Úbeda ◽  
Jordana Sena Lopes ◽  
Carmen Matas ◽  
...  

Abstract Background: In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits.Results: The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group.Conclusions: The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
E. París-Oller ◽  
S. Navarro-Serna ◽  
C. Soriano-Úbeda ◽  
J. S. Lopes ◽  
C. Matás ◽  
...  

Abstract Background In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of a modified IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimally invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits. Results The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and modified (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but could mitigate the impact of artificial procedures in the offspring.


2020 ◽  
Author(s):  
Evelynne Paris-Oller ◽  
Sergio Navarro-Serna ◽  
Cristina Soriano-Úbeda ◽  
Jordana Sena Lopes ◽  
Carmen Matas ◽  
...  

Abstract Background: In vitro embryo production (IVP) and embryo transfer (ET) are two very common assisted reproductive technologies (ART) in human and cattle. However, in pig, the combination of either procedures, or even their use separately, is still considered suboptimal due to the low efficiency of IVP plus the difficulty of performing ET in the long and contorted uterus of the sow. In addition, the potential impact of these two ART on the health of the offspring is unknown. We investigated here if the use of an improved IVP system, with natural reproductive fluids (RF) as supplements to the culture media, combined with a minimal invasive surgery to perform ET, affects the output of the own IVP system as well as the reproductive performance of the mother and placental molecular traits.Results: The blastocyst rates obtained by both in vitro systems, conventional (C-IVP) and improved (RF-IVP), were similar. Pregnancy and farrowing rates were also similar. However, when compared to in vivo control (artificial insemination, AI), litter sizes of both IVP groups were lower, while placental efficiency was higher in AI than in RF-IVP. Gene expression studies revealed aberrant expression levels for PEG3 and LUM in placental tissue for C-IVP group when compared to AI, but not for RF-IVP group. Conclusions: The use of reproductive fluids as additives for the culture media in pig IVP does not improve reproductive performance of recipient mothers but can mitigate the impact of artificial procedures in the offspring.


2021 ◽  
Vol 22 (12) ◽  
pp. 6426
Author(s):  
Sebastian Canovas ◽  
Elena Ivanova ◽  
Meriem Hamdi ◽  
Fernando Perez-Sanz ◽  
Dimitrios Rizos ◽  
...  

Assisted reproductive technologies impact transcriptome and epigenome of embryos and can result in long-term phenotypic consequences. Whole-genome DNA methylation profiles from individual bovine blastocysts in vivo- and in vitro-derived (using three sources of protein: reproductive fluids, blood serum and bovine serum albumin) were generated. The impact of in vitro culture on DNA methylation was analyzed, and sex-specific methylation differences at blastocyst stage were uncovered. In vivo embryos showed the highest levels of methylation (29.5%), close to those produced in vitro with serum, whilst embryos produced in vitro with reproductive fluids or albumin showed less global methylation (25–25.4%). During repetitive element analysis, the serum group was the most affected. DNA methylation differences between in vivo and in vitro groups were more frequent in the first intron than in CpGi in promoters. Moreover, hierarchical cluster analysis showed that sex produced a stronger bias in the results than embryo origin. For each group, distance between male and female embryos varied, with in vivo blastocyst showing a lesser distance. Between the sexually dimorphic methylated tiles, which were biased to X-chromosome, critical factors for reproduction, developmental process, cell proliferation and DNA methylation machinery were included. These results support the idea that blastocysts show sexually-dimorphic DNA methylation patterns, and the known picture about the blastocyst methylome should be reconsidered.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jordana S. Lopes ◽  
Cristina Soriano-Úbeda ◽  
Evelyne París-Oller ◽  
Sergio Navarro-Serna ◽  
Analuce Canha-Gouveia ◽  
...  

Assisted reproductive technologies play a major role in the cattle industry. An increase in the use of in vitro-derived embryos is currently being seen around the globe. But the efficiency and quality of the in vitro-derived embryos are substandard when compared to the in vivo production. Different protocols have been designed to overcome this issue, one of those being the use of reproductive fluids as supplementation to embryo culture media. In this study, in vitro-derived calves produced with reproductive fluids added to their embryo production protocol were followed for the first year of life pairwise with their in vivo control, produced by artificial insemination (AI), and their in vitro control, produced with standard supplementation in embryo production. The objective was to assess if any differences could be found in terms of growth and development as well as hematological and biochemical analytes between the different systems. All the analysed variables (physical, hematological, and biochemical) were within physiological range and very similar between calves throughout the entire experiment. However, differences were more evident between calves derived from standard in vitro production and AI. We concluded that the use of reproductive fluids as a supplementation to the embryo culture media results in calves with closer growth and development patterns to those born by AI than the use of bovine serum albumin as supplementation.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 114-114
Author(s):  
Sebastian Canovas ◽  
Raquel Romar ◽  
Pilar Coy

Abstract Physiological fertilization, and early embryo development, involves dramatic transcriptomic, epigenetic and morphological changes in a short temporal window. During this period gametes and early embryos are surrounded by reproductive fluids (oviductal and uterine), which contain nutrients, growth factors, hormones and extracellular vesicles acting as carriers of DNA, RNA, proteins and other factors with putative roles in intercellular communication. Under in vitro conditions, and in the absence of these fluids, embryos derived from Assisted Reproductive Technologies (ART) reveal transcriptional and epigenetic differences compared with in vivo embryos, which could result in long-term phenotypic consequences in adult life. Therefore, reproductive fluids supplementation in the culture medium offers an alternative to imitate physiological conditions and decrease these consequences. In vitro, oviductal fluid (OF) can modulate capacitation-associated events and sperm-zona pellucida interactions and contribute to the control of polyspermy in pigs. The use of in vitro fertilization media supplemented with reproductive fluids (Natur-IVF) improves embryo quality and blastocysts hatching ability. Moreover, Natur-IVF embryos show expression and methylation patterns closer to in vivo blastocysts. In cows, supplementation of culture media with reproductive fluids, or some isolated factors, improves blastocyst rate and survival after embryo transfer, and reverses the expression of some altered genes. However, considering the complexity of the oviductal and uterine fluids, it seems difficult that the use of just a few factors in isolation can reverse all undesired consequences of the IVP. On the other hand, sex-specific embryonic plasticity, as a consequence of the oviductal regulatory signals, have been proposed. Thus, we have analysed the sex-specific effect of supplementation with reproductive fluids in bovine embryos and data reveal sex-dependent impact in DNA methylation. All these results confirm that developmental programme can be modulated by reproductive fluids and it shows sex-specific effects. This strategy allows the possibility of minimizing undesired in vitro derived consequences.


Author(s):  
Nikolai A. Ognerubov

In connection with the active development and use of assisted reproductive technologies, protection of the human embryo and its legal status issue is currently being actualized. We make an attempt to reveal and explain some of the international aspects of the criminal law protection of the life and rights of the embryo. We consider the concept of “embryo” not only from the point of view of various scientific approaches (medicine, biology, embryology, jurisprudence), but also from the legislative side. We present and analyze the first mention of the embryo in Roman private law in connection with modern domestic law. We carry out an analysis of international legal acts that provide protection of embryos both “in vitro” and “in vivo”, followed by consideration of specific criminal law norms of foreign countries, namely Brazil and Colombia. We pay attention to some of the most famous cases from the jurisprudence of the European Court of Human Rights in order to understand the applied international legal acts “de facto”. The study also takes into account modern domestic legislation and considers point “g” of part 2 of Article 105 of the Criminal Code of the Russian Federation.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Salvatore Giovanni Vitale ◽  
Paola Rossetti ◽  
Francesco Corrado ◽  
Agnese Maria Chiara Rapisarda ◽  
Sandro La Vignera ◽  
...  

Assisted reproductive technologies (ART) have experienced growing interest from infertile patients seeking to become pregnant. The quality of oocytes plays a pivotal role in determining ART outcomes. Although many authors have studied how supplementation therapy may affect this important parameter for both in vivo and in vitro models, data are not yet robust enough to support firm conclusions. Regarding this last point, in this review our objective has been to evaluate the state of the art regarding supplementation with melatonin and myo-inositol in order to improve oocyte quality during ART. On the one hand, the antioxidant effect of melatonin is well known as being useful during ovulation and oocyte incubation, two occasions with a high level of oxidative stress. On the other hand, myo-inositol is important in cellular structure and in cellular signaling pathways. Our analysis suggests that the use of these two molecules may significantly improve the quality of oocytes and the quality of embryos: melatonin seems to raise the fertilization rate, and myo-inositol improves the pregnancy rate, although all published studies do not fully agree with these conclusions. However, previous studies have demonstrated that cotreatment improves these results compared with melatonin alone or myo-inositol alone. We recommend that further studies be performed in order to confirm these positive outcomes in routine ART treatment.


2022 ◽  
Vol 22 ◽  
Author(s):  
Meng Li ◽  
Jiang Chang ◽  
Honglin Ren ◽  
Defeng Song ◽  
Jian Guo ◽  
...  

Background Increased CCKBR expression density or frequency has been reported in many neoplasms. Objective We aimed to investigate whether CCKBR drives the growth of gastric cancer (GC) and its potential as a therapeutic target of immunotoxins. Methods A lentiviral interference system was used to generate CCKBR-knockdown gastric cancer cells. Cell Counting Kit-8 and clonogenic assays were used to evaluate cell proliferation. Wound-healing and cell invasion assays were performed to evaluate cell mobility. Cell cycle was analyzed by flow cytometry. Tumor growth in vivo was investigated using a heterologous tumor transplantation model in nude mice. In addition, we generated the immunotoxin FQ17P and evaluated the combining capacity and tumor cytotoxicity of FQ17P in vitro. Results Stable downregulation of CCKBR expression resulted in reduced proliferation, migration and invasion of BGC-823 and SGC-7901 cells. The impact of CCKBR on gastric cancer cells was further verified through CCKBR overexpression studies. Downregulation of CCKBR expression also inhibited the growth of gastric tumors in vivo. Furthermore, FQ17P killed CCKBR-overexpressing GC cells by specifically binding to CCKBR on the tumor cell surface. Conclusion The CCKBR protein drives the growth, migration, and invasion of gastric cancer cells, and it might be a promising target for immunotoxin therapy based on its aberrant expression, functional binding interactions with gastrin, and subsequent internalization.


2020 ◽  
Author(s):  
Mehdi Hajian ◽  
Farnoosh Jafarpour ◽  
Sayed Morteza Aghamiri ◽  
Shiva Rouhollahi Varnosfaderani ◽  
Mohsen Rahimi ◽  
...  

Abstract Background: The ingredients of embryo culture media developed by different companies are disclosed. Thus, it is impossible to determine which ingredients might be responsible for differences in pre-and post-implantation embryo development. To address this gap, we performed an experiment to compare two embryo culture media, namely, SOF and commercial BO, on pre- and post-implantation development of cloned Sannen goat embryos. Cumulus oocyte complexes derived from slaughterhouse ovaries were used for in vitro embryo production . In vitro development of IVF, parthenogenetic and SCNT embryos were assessed in both BO and SOF media. The expression of 16 genes, including AKT , OCT4 , SOX2 , BMPR1 , FGFR4 , CDC25 , CDX2 , GCN5 , PCAF , FOXD3 , SMAD5 , FZD , LIFR1 , CTNNB , ERK1 , and IFNT , belonging to 7 important pathways, i.e. pluripotency, FGF, TGFβ, cell cycle and proliferation, histone transferase, trophectoderm, and WNT, were examined in the goat SCNT and IVF blastocysts from both BO and SOF media. Results: The blastocyst rate in BO medium was significantly higher than that of the SOF medium in SCNT embryos ( P < 0.05). All of the genes examined showed increased expression levels in SCNT embryos compared to IVF embryos. In the IVF group, OCT4 , BMPR1 , and GCN5 showed significantly higher expression in the SOF medium compared to the BO medium. In this group, AKT , FGFR4 , SOX2 showed significantly lower expression in the SOF medium compared to the BO medium. In the SCNT group, FGFR4 , GCN5 , FZD , CTNNB , BMPR1 , and FGFR4 showed significantly higher expression in SOF medium compared to BO medium. In vivo development did not differ significantly between the two groups. Conclusions: Based on these results, we concluded that the limited information available on the allocations of ICM and TE cells in SCNT embryos and embryo-specific gene expression may be the major drawback IVC medium and an impediment to successful animal cloning.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sebastian Canovas ◽  
Elena Ivanova ◽  
Raquel Romar ◽  
Soledad García-Martínez ◽  
Cristina Soriano-Úbeda ◽  
...  

The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.


Sign in / Sign up

Export Citation Format

Share Document