scholarly journals TRPM7 and CaV3.2 channels mediate Ca2+ influx required for egg activation at fertilization

2018 ◽  
Vol 115 (44) ◽  
pp. E10370-E10378 ◽  
Author(s):  
Miranda L. Bernhardt ◽  
Paula Stein ◽  
Ingrid Carvacho ◽  
Christopher Krapp ◽  
Goli Ardestani ◽  
...  

The success of mammalian development following fertilization depends on a series of transient increases in egg cytoplasmic Ca2+, referred to as Ca2+ oscillations. Maintenance of these oscillations requires Ca2+ influx across the plasma membrane, which is mediated in part by T-type, CaV3.2 channels. Here we show using genetic mouse models that TRPM7 channels are required to support this Ca2+ influx. Eggs lacking both TRPM7 and CaV3.2 stop oscillating prematurely, indicating that together they are responsible for the majority of Ca2+ influx immediately following fertilization. Fertilized eggs lacking both channels also frequently display delayed resumption of Ca2+ oscillations, which appears to require sperm–egg fusion. TRPM7 and CaV3.2 channels almost completely account for Ca2+ influx observed following store depletion, a process previously attributed to canonical store-operated Ca2+ entry mediated by STIM/ORAI interactions. TRPM7 serves as a membrane sensor of extracellular Mg2+ and Ca2+ concentrations and mediates the effects of these ions on Ca2+ oscillation frequency. When bred to wild-type males, female mice carrying eggs lacking TRPM7 and CaV3.2 are subfertile, and their offspring have increased variance in postnatal weight. These in vivo findings confirm previous observations linking in vitro experimental alterations in Ca2+ oscillatory patterns with developmental potential and offspring growth. The identification of TRPM7 and CaV3.2 as key mediators of Ca2+ influx following fertilization provides a mechanistic basis for the rational design of culture media that optimize developmental potential in research animals, domestic animals, and humans.

Reproduction ◽  
2007 ◽  
Vol 133 (5) ◽  
pp. 877-886 ◽  
Author(s):  
J Ye ◽  
J Coleman ◽  
M G Hunter ◽  
J Craigon ◽  
K H S Campbell ◽  
...  

Ovarian folliclesin vivoare cooler than surrounding abdominal and ovarian tissues. This study investigated whether typical follicular temperatures influence the maturation and developmental potential of pig oocytesin vitro. Oocytes were synchronised at the germinal vesicle (GV) stage and incubated at 39, 37 or 35.5 °C. When compared with 39 °C, which is often used forin vitrostudies, lower temperatures delayed spontaneous progression to the metaphase I and II (MI and MII) stages of meiosis. The MII was delayed by about 12 h per °C. All oocytes had normal morphology. Oocytes reaching GV breakdown (GVBD) at 39 °C were subsequently unaffected by cooling, demonstrating thermal sensitivity during the pre-GVBD stage only. Simultaneous assay of maturation-controlling kinases (maturation promoting factor (MPF) and MAPK) showed that cooling delayed kinase activation, provided it was applied prior to GVBD. Activity profiles remained coupled to the stage of meiosis. Neither enzyme was directly thermally sensitive over this temperature range. Followingin vitrofertilisation, fewer blastocysts developed from embryos derived from 35.5 or 37 °C oocytes as compared with those from 39 °C oocytes. Manipulation of fertilisation timings to allow for delayed maturation showed that over-maturing or aging at lower temperatures compromises subsequent embryo development, despite normal nuclear maturation; the GV stage was again the thermally sensitive period. Cleavage rates were improved by the culture of oocytes with follicle-stimulating hormone (FSH) at 37 but not at 35.5 °C. Inclusion of 20% follicular fluid in the oocyte medium restored the blastocyst rate to that seen at higher temperatures. Thus, FSH and follicular fluid may allow oocytes to achieve normal developmental potential atin vivotemperatures.


Inorganics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 128 ◽  
Author(s):  
Giglio ◽  
Rey

Technetium-99m has a rich coordination chemistry that offers many possibilities in terms of oxidation states and donor atom sets. Modifications in the structure of the technetium complexes could be very useful for fine tuning the physicochemical and biological properties of potential 99mTc radiopharmaceuticals. However, systematic study of the influence of the labelling strategy on the “in vitro” and “in vivo” behaviour is necessary for a rational design of radiopharmaceuticals. Herein we present a review of the influence of the Tc complexes’ molecular structure on the biodistribution and the interaction with the biological target of potential nitroimidazolic hypoxia imaging radiopharmaceuticals presented in the literature from 2010 to the present. Comparison with the gold standard [18F]Fluoromisonidazole (FMISO) is also presented.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


2021 ◽  
Vol 7 (6) ◽  
pp. eaba2458
Author(s):  
Weier Bao ◽  
Falin Tian ◽  
Chengliang Lyu ◽  
Bin Liu ◽  
Bin Li ◽  
...  

The poor understanding of the complex multistep process taken by nanocarriers during the delivery process limits the delivery efficiencies and further hinders the translation of these systems into medicine. Here, we describe a series of six self-assembled nanocarrier types with systematically altered physical properties including size, shape, and rigidity, as well as both in vitro and in vivo analyses of their performance in blood circulation, tumor penetration, cancer cell uptake, and anticancer efficacy. We also developed both data and simulation-based models for understanding the influence of physical properties, both individually and considered together, on each delivery step and overall delivery process. Thus, beyond finding that nanocarriers that are simultaneously endowed with tubular shape, short length, and low rigidity outperformed the other types, we now have a suit of theoretical models that can predict how nanocarrier properties will individually and collectively perform in the multistep delivery of anticancer therapies.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


1997 ◽  
Vol 8 (2) ◽  
pp. 175-200 ◽  
Author(s):  
H.F. Jenkinson ◽  
RJ Lamont

Streptococci express arrays of adhesins on their cell surfaces that facilitate adherence to substrates present in their natural environment within the mammalian host. A consequence of such promiscuous binding ability is that streptococcal cells may adhere simultaneously to a spectrum of substrates, including salivary glycoproteins, extracellular matrix and serum components, host cells, and other microbial cells. The multiplicity of streptococcal adherence interactions accounts, at least in part, for their success in colonizing the oral and epithelial surfaces of humans. Adhesion facilitates colonization and may be a precursor to tissue invasion and immune modulation, events that presage the development of disease. Many of the streptococcal adhesins and virulence-related factors are cell-wall-associated proteins containing repeated sequence blocks of amino acids. Linear sequences, both within the blocks and within non-repetitive regions of the proteins, have been implicated in substrate binding. Sequences and functions of these proteins among the streptococci have become assorted through gene duplication and horizontal transfer between bacterial populations. Several adhesins identified and characterized through in vitro binding assays have been analyzed for in vivo expression and function by means of animal models used for colonization and virulence. Information on the molecular structure of adhesins as related to their in vivo function will allow for the rational design of novel acellular vaccines, recombinant antibodies, and adhesion agonists for the future control or prevention of streptococcal colonization and streptococcal diseases.


2016 ◽  
Vol 38 (3) ◽  
pp. 859-870 ◽  
Author(s):  
Mingfeng He ◽  
Hongquan Dong ◽  
Yahui Huang ◽  
Shunmei Lu ◽  
Shu Zhang ◽  
...  

Background/Aims: Microglia are an essential player in central nervous system inflammation. Recent studies have demonstrated that the astrocytic chemokine, CCL2, is associated with microglial activation in vivo. However, CCL2-induced microglial activation has not yet been studied in vitro. The purpose of the current study was to understand the role of astrocyte-derived CCL2 in microglial activation and to elucidate the underlying mechanism(s). Methods: Primary astrocytes were pre-treated with CCL2 siRNA and stimulated with TNF-α. The culture medium (CM) was collected and added to cultures of microglia, which were incubated with and without CCR2 inhibitor. Microglial cells were analyzed by quantitative RT-PCR to determine whether they polarized to the M1 or M2 state. Microglial migratory ability was assessed by transwell migration assay. Results: TNF-α stimulated the release of CCL2 from astrocytes, even if the culture media containing TNF-α was replaced with fresh media after 3 h. CM from TNF-α-stimulated astrocytes successfully induced microglial activation, which was ascertained by increased activation of M1 and enhanced migration ability. In contrast, CM from astrocytes pretreated with CCL2 siRNA showed no effect on microglial activation, compared to controls. Additionally, microglia pre-treated with RS102895, a CCR2 inhibitor, were resistant to activation by CM from TNF-α-stimulated astrocytes. Conclusion: This study demonstrates that the CCL2/CCR2 pathway of astrocyte-induced microglial activation is associated with M1 polarization and enhanced migration ability, indicating that this pathway could be a useful target to ameliorate inflammation in the central nervous system.


2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


1997 ◽  
Vol 110 (14) ◽  
pp. 1673-1682 ◽  
Author(s):  
J.G. Stone ◽  
L.I. Spirling ◽  
M.K. Richardson

The peptide endothelin 3 (EDN3) is essential for normal neural crest development in vivo, and is a potent mitogen for quail truncal crest cells in vitro. It is not known which subpopulations of crest cells are targets for this response, although it has been suggested that EDN3 is selective for melanoblasts. In the absence of cell markers for different precursor types in the quail crest, we have characterised EDN3-responsive cell types using in vitro colony assay and clonal analysis. Colonies were analysed for the presence of Schwann cells, melanocytes, adrenergic cells or sensory-like cells. We provide for the first time a description of the temporal pattern of lineage segregation in neural crest cultures. In the absence of exogenous EDN3, crest cells proliferate and then differentiate. Colony assay indicates that in these differentiated cultures few undifferentiated precursors remain and there is a low replating efficiency. By contrast, in the presence of 100 ng/ml EDN3 differentiation is inhibited and most of the cells maintain the ability to give rise to mixed colonies and clones containing neural crest derivatives. A high replating efficiency is maintained. In secondary culture there was a progressive decline in the number of cell types per colony in control medium. This loss of developmental potential was not seen when exogenous EDN3 was present. Cell type analysis suggests two novel cellular targets for EDN3 under these conditions. Contrary to expectations, one is a multipotent precursor whose descendants include melanocytes, adrenergic cells and sensory-like cells; the other can give rise to melanocytes and Schwann cells. Our data do not support previous claims that the action of EDN3 in neural crest culture is selective for cells in the melanocyte lineage.


2021 ◽  
Vol 95 ◽  
Author(s):  
E.S. El-Wakil ◽  
H.F. Abdelmaksoud ◽  
T.S. AbouShousha ◽  
M.M.I. Ghallab

Abstract Our work aimed to evaluate the possible effect of Annona muricata (Graviola) leaf extract on Trichinella spiralis in in vitro and in vivo studies. Trichinella spiralis worms were isolated from infected mice and transferred to three culture media – group I (with no drugs), group II (contained Graviola) and group III (contained albendazole) – then they were examined using the electron microscope. In the in vivo study, mice were divided into five groups: GI (infected untreated), GII (prophylactically treated with Graviola for seven days before infection), GIII (infected and treated with Graviola), GIV (infected and treated with albendazole) and GV (infected and treated with a combination of Graviola plus albendazole in half doses). Drug effects were assessed by adults and larvae load beside the histopathological small intestinal and muscular changes. A significant reduction of adult and larval counts occurred in treated groups in comparison to the control group. Histopathologically, marked improvement in the small intestinal and muscular changes was observed in treated groups. Also, massive destruction of the cultured adults’ cuticle was detected in both drugs. This study revealed that Graviola leaves have potential activity against trichinellosis, especially in combination with albendazole, and could serve as an adjuvant to anti-trichinellosis drug therapy.


Sign in / Sign up

Export Citation Format

Share Document