scholarly journals The Gene for the Embryonic Stem Cell Coactivator UTF1 Carries a Regulatory Element Which Selectively Interacts with a Complex Composed of Oct-3/4 and Sox-2

1999 ◽  
Vol 19 (8) ◽  
pp. 5453-5465 ◽  
Author(s):  
Masazumi Nishimoto ◽  
Akiko Fukushima ◽  
Akihiko Okuda ◽  
Masami Muramatsu

ABSTRACT UTF1 is a transcriptional coactivator which has recently been isolated and found to be expressed mainly in pluripotent embryonic stem (ES) cells (A. Okuda, A. Fukushima, M. Nishimoto, et al., EMBO J. 17:2019–2032, 1998). To gain insight into the regulatory network of gene expression in ES cells, we have characterized the regulatory elements governing UTF1 gene expression. The results indicate that the UTF1 gene is one of the target genes of an embryonic octamer binding transcription factor, Oct-3/4. UTF1 expression is, like the FGF-4 gene, regulated by the synergistic action of Oct-3/4 and another embryonic factor, Sox-2, implying that the requirement for Sox-2 by Oct-3/4 is not limited to the FGF-4 enhancer but is rather a general mechanism of activation for Oct-3/4. Our biochemical analyses, however, also reveal one distinct difference between these two regulatory elements: unlike the FGF-4 enhancer, the UTF1 regulatory element can, by its one-base difference from the canonical octamer-binding sequence, selectively recruit the complex comprising Oct-3/4 and Sox-2 and preclude the binding of the transcriptionally inactive complex containing Oct-1 or Oct-6. Furthermore, our analyses reveal that these properties are dictated by the unique ability of the Oct-3/4 POU-homeodomain that recognizes a variant of the Octamer motif in the UTF1 regulatory element.

2005 ◽  
Vol 280 (16) ◽  
pp. 16484-16498 ◽  
Author(s):  
Eduardo Martinez-Ceballos ◽  
Pierre Chambon ◽  
Lorraine J. Gudas

Homeobox (Hox) genes encode a family of transcription factors that regulate embryonic patterning and organogenesis. In embryos, alterations of the normal pattern of Hox gene expression result in homeotic transformations and malformations. Disruption of theHoxa1gene, the most 3′ member of the Hoxa cluster and a retinoic acid (RA) direct target gene, results in abnormal ossification of the skull, hindbrain, and inner ear deficiencies, and neonatal death. We have generated Hoxa1-/-embryonic stem (ES) cells (named Hoxa1-15) from Hoxa1-/-mutant blastocysts to study the Hoxa1 signaling pathway. We have characterized in detail these Hoxa1-/-ES cells by performing microarray analyses, and by this technique we have identified a number of putative Hoxa-1 target genes, including genes involved in bone development (e.g. Col1a1,Postn/Osf2, and the bone sialoprotein gene orBSP), genes that are expressed in the developing brain (e.g. Nnat,Wnt3a,BDNF,RhoB, andGbx2), and genes involved in various cellular processes (e.g. M-RAS,Sox17,Cdkn2b,LamA1,Col4a1,Foxa2,Foxq1,Klf5, andIgf2). Cell proliferation assays and Northern blot analyses of a number of ES cell markers (e.g. Rex1,Oct3/4,Fgf4, andBmp4) suggest that the Hoxa1 protein plays a role in the inhibition of cell proliferation by RA in ES cells. Additionally, Hoxa1-/-ES cells express high levels of various endodermal markers, includingGata4andDab2, and express much lessFgf5after leukemia inhibitory factor (LIF) withdrawal. Finally, we propose a model in which the Hoxa1 protein mediates repression of endodermal differentiation while promoting expression of ectodermal and mesodermal characteristics.


2021 ◽  
Author(s):  
Weizheng Liang ◽  
Guipeng Li ◽  
Huanhuan Cui ◽  
Yukai Wang ◽  
Wencheng Wei ◽  
...  

Abstract Background: Differences in gene expression, which arises from divergence in cis-regulatory elements or alterations in transcription factors (TFs) binding specificity, are one of the most important causes of phenotypic diversity during evolution. On one hand, changes in the cis-elements located in the vicinity of target genes affect TF binding and/or local chromatin environment, thereby modulating gene expression in one-to-one manner. On the other hand, alterations in trans-factors influence the expression of their target genes in a more pleiotropic fashion. Although evolution of amino acid sequences is much slower than that of non-coding regulatory elements, particularly for the TF DNA binding domains (DBD), it is still possible that changes in TF-DBD might have the potential to drive large phenotypic changes if the resulting effects have a net positive effect on the organism’s fitness. If so, species-specific changes in TF-DBD might be positively selected. So far, however, this possibility has been largely unexplored.Results: By protein sequence analysis, we observed high sequence conservation in the DNA binding domain (DBD) of the transcription factor Cdx2 across many vertebrates, whereas three amino acid changes were exclusively found in mouse Cdx2 (mCdx2), suggesting potential positive selection in the mouse lineage. Multi-omics analyses were then carried out to investigate the effects of these changes. Surprisingly, there were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Finally, we used rat-mouse allodiploid embryonic stem cells (RMES) to study the cis effects of Cdx2-mediated gene regulation between the two rodents. Interestingly, whereas Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.Conclusions: There were no significant functional differences between mCdx2 and its rat homologue (rCdx2), and none of the three amino acid changes had any impact on its function. Moreover, Cdx2 binding is largely divergent between mouse and rat, the transcriptional effect induced by Cdx2 is conserved to a much larger extent.


Endocrinology ◽  
2005 ◽  
Vol 146 (2) ◽  
pp. 776-783 ◽  
Author(s):  
Yan-Yun Liu ◽  
Gregory A. Brent

Abstract T3 is required for normal early development, but relatively few T3-responsive target genes have been identified. In general, in vitro stem cell differentiation techniques stimulate a wide range of developmental programs, including thyroid hormone receptor (TR) pathways. We developed several in vitro stem cell models to more specifically identify TR-mediated gene expression in early development. We found that embryonic carcinoma (EC) cells have reduced T3 nuclear binding capacity and only modestly express the known T3 target genes, neurogranin (RC3) and Ca2+/calmodulin-dependent protein kinase IV (CaMKIV), in response to T3. Full T3 induction in transient transfection of EC cells was restored with cotransfection of a TR expression vector. We, therefore, performed gene expression profiles in wild-type embryonic stem (ES) cells compared with expression in cells with deficient (EC) or mutant TR (TRα P398H mutant ES cells), to identify T3 target genes. T3 stimulation of wild-type ES cells altered mRNA expression of 610 known genes (26% of those studied), although only approximately 60 genes (1%) met criteria for direct T3 stimulation based on the magnitude of induction and requirement for the presence of TR. We selected five candidate T3 target genes, neurexophilin 2, spermatid perinuclear RNA-binding protein (SPNR), kallikrein-binding protein (KBP), prostate-specific membrane antigen (PSMA), and synaptotagmin II, for more detailed study. T3 responsiveness of these genes was evaluated in both in vitro endogenous gene expression and in vivo mouse model systems. These genes identified in a novel stem cell system, including those induced and repressed in response to T3, may mediate thyroid hormone actions in early development.


2013 ◽  
Vol 288 (29) ◽  
pp. 20776-20784 ◽  
Author(s):  
Feng-Tao Shi ◽  
Hyeung Kim ◽  
Weisi Lu ◽  
Quanyuan He ◽  
Dan Liu ◽  
...  

As a member of the Tet (Ten-eleven translocation) family proteins that can convert 5-methylcytosine (5mC) to 5-hydroxylmethylcytosine (5hmC), Tet1 has been implicated in regulating global DNA demethylation and gene expression. Tet1 is highly expressed in embryonic stem (ES) cells and appears primarily to repress developmental genes for maintaining pluripotency. To understand how Tet1 may regulate gene expression, we conducted large scale immunoprecipitation followed by mass spectrometry of endogenous Tet1 in mouse ES cells. We found that Tet1 could interact with multiple chromatin regulators, including Sin3A and NuRD complexes. In addition, we showed that Tet1 could also interact with the O-GlcNAc transferase (Ogt) and be O-GlcNAcylated. Depletion of Ogt led to reduced Tet1 and 5hmC levels on Tet1-target genes, whereas ectopic expression of wild-type but not enzymatically inactive Ogt increased Tet1 levels. Mutation of the putative O-GlcNAcylation site on Tet1 led to decreased O-GlcNAcylation and level of the Tet1 protein. Our results suggest that O-GlcNAcylation can positively regulate Tet1 protein concentration and indicate that Tet1-mediated 5hmC modification and target repression is controlled by Ogt.


2017 ◽  
Author(s):  
Daosheng Huang ◽  
Xiaoping Han ◽  
Ping Yuan ◽  
Amy Ralston ◽  
Lingang Sun ◽  
...  

SUMMARYThe first cellular differentiation event in mouse development leads to the formation of the blastocyst consisting of the inner cell mass (ICM) and an outer functional epithelium called trophectoderm (TE). The lineage specific transcription factor CDX2 is required for proper TE specification, where it promotes expression of TE genes, and represses expression of Pou5f1 (OCT4) by inhibiting OCT4 from promoting its own expression. However its downstream network in the developing early embryo is not fully characterized. Here, we performed high-throughput single embryo qPCR analysis in Cdx2 null embryos to identify components of the CDX2-regulated network in vivo. To identify genes likely to be regulated by CDX2 directly, we performed CDX2 ChIP-Seq on trophoblast stem (TS) cells, derived from the TE. In addition, we examined the dynamics of gene expression changes using an inducible CDX2 embryonic stem (ES) cell system, so that we could predict which CDX2-bound genes are activated or repressed by CDX2 binding. By integrating these data with observations of chromatin modifications, we were able to identify novel regulatory elements that are likely to repress gene expression in a lineage-specific manner. Interestingly, we found CDX2 binding sites within regulatory elements of key pluripotent genes such as Pou5f1 and Nanog, pointing to the existence of a novel mechanism by which CDX2 maintains repression of OCT4 in trophoblast. Our study proposes a general mechanism in regulating lineage segregation during mammalian development.


2021 ◽  
Author(s):  
Alexandre Laverré ◽  
Eric Tannier ◽  
Anamaria Necsulea

AbstractGene expression is regulated through complex molecular interactions, involving cis-acting elements that can be situated far away from their target genes. Data on long-range contacts between promoters and regulatory elements is rapidly accumulating. However, it remains unclear how these regulatory relationships evolve and how they contribute to the establishment of robust gene expression profiles. Here, we address these questions by comparing genome-wide maps of promoter-centered chromatin contacts in mouse and human. We show that there is significant evolutionary conservation of cis-regulatory landscapes, indicating that selective pressures act to preserve regulatory element sequences and their interactions with target genes. The extent of evolutionary conservation is remarkable for long-range promoter-enhancer contacts, illustrating how the structure of regulatory interactions constrains large-scale genome evolution. Notably, we show that the evolution of cis-regulatory landscapes, measured in terms of distal element sequences, synteny or contacts with target genes, is tightly linked to gene expression evolution.


2021 ◽  
pp. gr.275901.121
Author(s):  
Alexandre Laverre ◽  
Eric Tannier ◽  
Anamaria Necsulea

Gene expression is regulated through complex molecular interactions, involving cis-acting elements that can be situated far away from their target genes. Data on long-range contacts between promoters and regulatory elements is rapidly accumulating. However, it remains unclear how these regulatory relationships evolve and how they contribute to the establishment of robust gene expression profiles. Here, we address these questions by comparing genome-wide maps of promoter-centered chromatin contacts in mouse and human. We show that there is significant evolutionary conservation of cis-regulatory landscapes, indicating that selective pressures act to preserve not only regulatory element sequences but also their chromatin contacts with target genes. The extent of evolutionary conservation is remarkable for long-range promoter-enhancer contacts, illustrating how the structure of regulatory landscapes constrains large-scale genome evolution. We show that the evolution of cis-regulatory landscapes, measured in terms of distal element sequences, synteny or contacts with target genes, is significantly associated with gene expression evolution.


2019 ◽  
Author(s):  
Kaia Mattioli ◽  
Winona Oliveros ◽  
Chiara Gerhardinger ◽  
Daniel Andergassen ◽  
Philipp G. Maass ◽  
...  

ABSTRACTGene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants in close proximity to the target gene, trans effects are due to distal genetic variants that affect diffusible elements such as transcription factors. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we used massively parallel reporter assays to directly measure cis and trans effects between human and mouse embryonic stem cells at thousands of individual regulatory elements. Our approach revealed that cis effects are widespread across regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we found that trans effects are rare but stronger in enhancers than promoters, and can be attributed to a subset of transcription factors that are differentially expressed between human and mouse. While previous studies have found extensive co-occurrence of cis and trans effects in opposite directions that stabilize gene expression throughout evolution, we find that cis-trans compensation is uncommon within individual regulatory elements. Thus, our results are consistent with a model wherein compensatory cis-trans effects at the gene level are explained by cis and trans effects that separately impact several regulatory elements rather than cis-trans effects that occur simultaneously within a single regulatory element. Together, these results indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.


Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2870-2882 ◽  
Author(s):  
Unmesh Jadhav ◽  
J. Larry Jameson

Steroidogenic factor 1 (SF-1) is essential for the development and function of steroidogenic tissues. Stable incorporation of SF-1 into embryonic stem cells (SF-1-ES cells) has been shown to prime the cells for steroidogenesis. When provided with exogenous cholesterol substrate, and after treatment with retinoic acid and cAMP, SF-1-ES cells produce progesterone but do not produce other steroids such as cortisol, estradiol, or testosterone. In this study, we explored culture conditions that optimize SF-1-mediated differentiation of ES cells into defined steroidogenic lineages. When embryoid body formation was used to facilitate cell lineage differentiation, SF-1-ES cells were found to be restricted in their differentiation, with fewer cells entering neuronal pathways and a larger fraction entering the steroidogenic lineage. Among the differentiation protocols tested, leukemia inhibitory factor (LIF) removal, followed by prolonged cAMP treatment was most efficacious for inducing steroidogenesis in SF-1-ES cells. In this protocol, a subset of SF-1-ES cells survives after LIF withdrawal, undergoes morphologic differentiation, and recovers proliferative capacity. These cells are characterized by induction of steroidogenic enzyme genes, use of de novo cholesterol, and production of multiple steroids including estradiol and testosterone. Microarray studies identified additional pathways associated with SF-1 mediated differentiation. Using biotinylated SF-1 in chromatin immunoprecipitation assays, SF-1 was shown to bind directly to multiple target genes, with induction of binding to some targets after steroidogenic treatment. These studies indicate that SF-1 expression, followed by LIF removal and treatment with cAMP drives ES cells into a steroidogenic pathway characteristic of gonadal steroid-producing cells.


1991 ◽  
Vol 11 (2) ◽  
pp. 641-654
Author(s):  
C Hinkley ◽  
M Perry

Xenopus oocytes, arrested in G2 before the first meiotic division, accumulate histone mRNA and protein in the absence of chromosomal DNA replication and therefore represent an attractive biological system in which to examine histone gene expression uncoupled from the cell cycle. Previous studies have shown that sequences necessary for maximal levels of transcription in oocytes are present within 200 bp at the 5' end of the transcription initiation site for genes encoding each of the five major Xenopus histone classes. We have defined by site-directed mutagenesis individual regulatory sequences and characterized DNA-binding proteins required for histone H2B gene transcription in injected oocytes. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CBP, and ATF/CREB binding sites, required for maximal transcription. A sequence (CTTTACAT) in the H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is not required for transcription in oocytes. Nonetheless, substitution of a consensus octamer motif for the variant octamer element activates H2B transcription. Oocyte factors, presumably including the ubiquitous Oct-1 factor, specifically bind to the consensus octamer motif but not to the variant sequence. Our results demonstrate that a transcriptional regulatory element involved in lymphoid-specific expression of immunoglobulin genes and in S-phase-specific activation of mammalian H2B histone genes can activate transcription in nondividing amphibian oocytes.


Sign in / Sign up

Export Citation Format

Share Document