scholarly journals Inhibitors of Histone Deacetylase and DNA Methyltransferase Synergistically Activate the Methylated Metallothionein I Promoter by Activating the Transcription Factor MTF-1 and Forming an Open Chromatin Structure

2002 ◽  
Vol 22 (23) ◽  
pp. 8302-8319 ◽  
Author(s):  
Kalpana Ghoshal ◽  
Jharna Datta ◽  
Sarmila Majumder ◽  
Shoumei Bai ◽  
Xiaocheng Dong ◽  
...  

ABSTRACT Inhibitors of DNA methyltransferase (Dnmt) and histone deacetylases (HDAC) synergistically activate the methylated metallothionein I gene (MT-I) promoter in mouse lymphosarcoma cells. The cooperative effect of these two classes of inhibitors on MT-I promoter activity was robust following demethylation of only a few CpG dinucleotides by brief exposure to 5-azacytidine (5-AzaC) but persisted even after prolonged treatment with the nucleoside analog. HDAC inhibitors (trichostatin A [TSA] and depsipeptide) either alone or in combination with 5-AzaC did not facilitate demethylation of the MT-I promoter. Treatment of cells with HDAC inhibitors increased accumulation of multiply acetylated forms of H3 and H4 histones that remained unaffected after treatment with 5-AzaC. Chromatin immunoprecipitation (ChIP) assay showed increased association of acetylated histone H4 and lysine 9 (K9)-acetyl H3 with the MT-I promoter after treatment with TSA, which was not affected following treatment with 5-AzaC. In contrast, the association of K9-methyl histone H3 with the MT-I promoter decreased significantly after treatment with 5-AzaC and TSA. ChIP assay with antibodies specific for methyl-CpG binding proteins (MBDs) demonstrated that only methyl-CpG binding protein 2 (MeCP2) was associated with the MT-I promoter, which was significantly enhanced after TSA treatment. Association of histone deacetylase 1 (HDAC1) with the promoter decreased after treatment with TSA or 5-AzaC and was abolished after treatment with both inhibitors. Among the DNA methyltransferases, both Dnmt1 and Dnmt3a were associated with the MT-I promoter in the lymphosarcoma cells, and association of Dnmt1 decreased with time after treatment with 5-AzaC. Treatment of these cells with HDAC inhibitors also increased expression of the MTF-1 (metal transcription factor-1) gene as well as its DNA binding activity. In vivo genomic footprinting studies demonstrated increased occupancy of MTF-1 to metal response elements of the MT-I promoter after treatment with both inhibitors. Analysis of the promoter by mapping with restriction enzymes in vivo showed that the MT-I promoter attained a more open chromatin structure after combined treatment with 5-AzaC and TSA as opposed to treatment with either agent alone. These results implicate involvement of multifarious factors including modified histones, MBDs, and Dnmts in silencing the methylated MT-I promoter in lymphosarcoma cells. The synergistic activation of this promoter by these two types of inhibitors is due to demethylation of the promoter and altered association of different factors that leads to reorganization of the chromatin and the resultant increase in accessibility of the promoter to the activated transcription factor MTF-1.

1997 ◽  
Vol 17 (10) ◽  
pp. 5813-5822 ◽  
Author(s):  
S A Patel ◽  
D M Graunke ◽  
R O Pieper

Tumor-associated aberrant silencing of CpG island-containing genes has been correlated with increased cytosine methylation, a "closed" chromatin structure, and exclusion of transcription factor binding in the CpG island/promoter regions of affected genes. Given the lack of understanding of what constitutes a closed chromatin structure in CpG islands, however, it has been difficult to assess the relationship among cytosine methylation, chromatin structure, and inappropriate gene silencing. In this study, nuclease accessibility analysis was used to more clearly define the chromatin structure in the CpG island of the human O6-methylguanine DNA methyltransferase (MGMT) gene. Chromatin structure was then related to in vivo DNA-protein interactions and cytosine methylation status of the MGMT CpG island in human glioma cells varying in MGMT expression. The results of these studies indicated that the "open" chromatin structure associated with the MGMT CpG island in MGMT+ cells consisted of an approximately 250-bp transcription factor-binding, nuclease-accessible, nucleosome-free region of DNA, whose formation was associated with at least four flanking, precisely positioned nucleosome-like structures. In MGMT- cells, this precise nucleosomal array was lost and was replaced by randomly positioned nucleosomes (i.e., the closed chromatin structure), regardless of whether methylation of the CpG island was spread over the entire island or limited to regions outside the transcription factor binding region. These results suggest that CpG islands facilitate the expression of housekeeping genes by facilitating nucleosomal positioning and that the conditions that alter the formation of this array (such as perhaps methylation) may indirectly affect CpG island-containing gene expression.


2001 ◽  
Vol 12 (11) ◽  
pp. 3365-3374 ◽  
Author(s):  
Bonnie J. Deroo ◽  
Trevor K. Archer

The glucocorticoid receptor (GR) is a ligand-activated transcription factor that induces expression of many genes. The GR has been useful for understanding how chromatin structure regulates steroid-induced transcription in model systems. However, the effect of glucocorticoids on chromatin structure has been examined on few endogenous mammalian promoters. We investigated the effect of glucocorticoids on the in vivo chromatin structure of the glucocorticoid-responsive IκBα gene promoter, the inhibitor of the ubiquitous transcription factor, nuclear factor kappa B (NFκB). Glucocorticoids inhibit NFκB activity in some tissues by elevating the levels of IκBα. We found that glucocorticoids activated the IκBα promoter in human T47D/A1-2 cells containing the GR. We then investigated the chromatin structure of the IκBα promoter in the absence and presence of glucocorticoids with the use of micrococcal nuclease, restriction enzyme, and deoxyribonuclease (DNaseI) analyses. In untreated cells, the promoter assembles into regularly positioned nucleosomes, and glucocorticoid treatment did not alter nucleosomal position. Restriction enzyme accessiblity studies indicated that the IκBα promoter is assembled as phased nucleosomes that adopt an “open” chromatin architecture in the absence of hormone. However, glucocorticoids may be required for transcription factor binding, because DNaseI footprinting studies suggested that regulatory factors bind to the promoter upon glucocorticoid treatment.


2021 ◽  
Vol 22 (11) ◽  
pp. 5516
Author(s):  
Qiting Zhang ◽  
Ziyan Wang ◽  
Xinyuan Chen ◽  
Haoxiang Qiu ◽  
Yifan Gu ◽  
...  

Epigenetic therapy using histone deacetylase (HDAC) inhibitors has become an attractive project in new drug development. However, DNA methylation and histone acetylation are important epigenetic ways to regulate the occurrence and development of leukemia. Given previous studies, N-(2-aminophenyl)benzamide acridine (8a), as a histone deacetylase 1 (HDAC1) inhibitor, induces apoptosis and shows significant anti-proliferative activity against histiocytic lymphoma U937 cells. HDAC1 plays a role in the nucleus, which we confirmed by finding that 8a entered the nucleus. Subsequently, we verified that 8a mainly passes through the endogenous (mitochondrial) pathway to induce cell apoptosis. From the protein interaction data, we found that 8a also affected the expression of DNA methyltransferase 1 (DNMT1). Therefore, an experiment was performed to assess the binding of 8a to DNMT1 at the molecular and cellular levels. We found that the binding strength of 8a to DNMT1 enhanced in a dose-dependent manner. Additionally, 8a inhibits the expression of DNMT1 mRNA and its protein. These findings suggested that the anti-proliferative and pro-apoptotic activities of 8a against leukemia cells were achieved by targeting HDAC1 and DNMT1.


2019 ◽  
Vol 116 (8) ◽  
pp. 2961-2966 ◽  
Author(s):  
Xiaowei Wu ◽  
Qingyu Luo ◽  
Pengfei Zhao ◽  
Wan Chang ◽  
Yating Wang ◽  
...  

Chemoresistance is a severe outcome among patients with ovarian cancer that leads to a poor prognosis. MCL1 is an antiapoptotic member of the BCL-2 family that has been found to play an essential role in advancing chemoresistance and could be a promising target for the treatment of ovarian cancer. Here, we found that deubiquitinating enzyme 3 (DUB3) interacts with and deubiquitinates MCL1 in the cytoplasm of ovarian cancer cells, which protects MCL1 from degradation. Furthermore, we identified that O6-methylguanine-DNA methyltransferase (MGMT) is a key activator of DUB3 transcription, and that the MGMT inhibitor PaTrin-2 effectively suppresses ovarian cancer cells with elevated MGMT-DUB3-MCL1 expression both in vitro and in vivo. Most interestingly, we found that histone deacetylase inhibitors (HDACis) could significantly activate MGMT/DUB3 expression; the combined administration of HDACis and PaTrin-2 led to the ideal therapeutic effect. Altogether, our results revealed the essential role of the MGMT-DUB3-MCL1 axis in the chemoresistance of ovarian cancer and identified that a combined treatment with HDACis and PaTrin-2 is an effective method for overcoming chemoresistance in ovarian cancer.


2012 ◽  
Vol 56 (7) ◽  
pp. 3849-3856 ◽  
Author(s):  
Subathdrage D. M. Sumanadasa ◽  
Christopher D. Goodman ◽  
Andrew J. Lucke ◽  
Tina Skinner-Adams ◽  
Ishani Sahama ◽  
...  

ABSTRACTHistone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g., suberoylanilide hydroxamic acid [SAHA; also known as vorinostat]) are used clinically to treat some cancers and are under investigation for use against many other diseases. Development of new HDAC inhibitors for noncancer indications has the potential to be accelerated by piggybacking onto cancer studies, as several HDAC inhibitors have undergone or are undergoing clinical trials. One such compound, SB939, is a new orally active hydroxamate-based HDAC inhibitor with an improved pharmacokinetic profile compared to that of SAHA. In this study, thein vitroandin vivoantiplasmodial activities of SB939 were investigated. SB939 was found to be a potent inhibitor of the growth ofPlasmodium falciparumasexual-stage parasitesin vitro(50% inhibitory concentration [IC50], 100 to 200 nM), causing hyperacetylation of parasite histone and nonhistone proteins. In combination with the aspartic protease inhibitor lopinavir, SB939 displayed additive activity. SB939 also potently inhibited thein vitrogrowth of exoerythrocytic-stagePlasmodiumparasites in liver cells (IC50, ∼150 nM), suggesting that inhibitor targeting to multiple malaria parasite life cycle stages may be possible. In an experimentalin vivomurine model of cerebral malaria, orally administered SB939 significantly inhibitedP. bergheiANKA parasite growth, preventing development of cerebral malaria-like symptoms. These results identify SB939 as a potent new antimalarial HDAC inhibitor and underscore the potential of investigating next-generation anticancer HDAC inhibitors as prospective new drug leads for treatment of malaria.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3050-3050
Author(s):  
Corinna Leng ◽  
Margathe Gries ◽  
Suzanne Lentzsch ◽  
Simone Lusatis ◽  
Paolo Mascagni ◽  
...  

Abstract Graft-versus-host disease (GVHD) mediated by alloreactive donor T cells is the most dreaded complication after allogeneic bone marrow transplantation (BMT). Conditioning therapy in the context of BMT creates a proinflammatory milieu, which is thought to be central to the development of GVHD. Interfering with the conditioning-induced inflammatory response could be an approach to prevent GVHD without compromising the graft-versus-malignancy reaction. Histone deacetylase (HDAC) inhibitors belong to a new family of anti-cancer drugs with potent anti-inflammatory properties and have recently been shown to reduce the development of GVHD. The aim of this study was understand the mechanisms underlying the downregulation of GVHD after treatment with the HDAC inhibitor suberonylanilide hydroxamic acid (SAHA). Using the fully MHC-mismatched strain combination B6 to BALB/c, treatment with SAHA resulted in a significantly reduced GVHD mortality. Thus, at days +10 or +37 post-BMT survival for vehicle-treated or SAHA-treated mice was 33 % versus 86 % and 8 % versus 57 % respectively (Chi2 test, p = 0,027 and p = 0,02, respectively). This was associated with a significant reduction in IFN-g and IL-5 serum levels of SAHA-treated animals. As we could not detect any effect of SAHA treatment on T cell activation or T cell expansion in vitro and in vivo, we hypothesized that the inhibitory effect of SAHA treatment on the development of GVHD might be primarily due to an interference in the early events of the inflammatory cascade occurring after conditioning and initial alloactivation. Therefore, we performed gene expression profiling studies in classical GVHD target organs of animals treated with SAHA or vehicle to further understand the mechanisms underlying this effect. SAHA treated animals revealed a significant upregulation of the mRNA expression of the Protein inhibitor of activated stat 1 (PIAS1) gene in the liver compared to vehicle-treated animals. To further strengthen the hypothesis that SAHA might exert its action by interfering with inflammatory reaction and subsequent signaling through the JAK/STAT pathway, we analyzed the effects of SAHA on STAT-1, 3, and 5 activation and expression of SOCS-1 and SOCS-3 in vitro and in vivo. Thus, BALB/c responder splenocytes were incubated with or without irradiated B6 stimulators in the presence or absence of LPS in order to allow for the separate analysis of LPS and alloactivation-induced JAK/STAT activation. Treatment for 24 hours with SAHA completely inhibited phosphorylation of STAT-1 and STAT-3 in response to LPS and alloactivation using western blot analysis. Furthermore, analysis of liver tissue from GVHD animals showed a sustained expression of SOCS-1 protein in SAHA treated animals whereas SOCS-1 was downregulated in the absence of SAHA. In conclusion our data suggest that the inhibitory effect of SAHA on the development of GVHD is associated with an inhibition of the JAK/STAT signaling pathway. Further studies are warranted to understand the precise mechanisms how SAHA interferes with JAK/STAT signaling and how this leads to inhibition of GVHD. However, it is conceivable that interfering with inflammatory signaling pathways using pharmacological inhibitors of the JAK/STAT pathway might provide a highly attractive treatment strategy for the prevention of GVHD.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4791-4791
Author(s):  
Michael Kline ◽  
Kathleen A. Donovan ◽  
John A. Lust

Abstract We have evaluated the efficacy of a novel hydroxamic acid-derived histone deacetylase (HDAC) inhibitor, ITF2357, to promote cell death in multiple myeloma (MM) cells. HDAC inhibitors, which promote histone hyperacetylation and increase gene expression, have been evaluated as candidate agents for combating malignancies because they impact the expression of genes related to proliferation, differentiation, and survival. Exposure of MM cell lines to 1 micromolar ITF2357 led to dramatically increased levels of histone acetylation at 4 hours and 8 hours by Western analysis. Sub-micromolar concentrations of ITF2357 promoted time- and concentration-dependent cell death in MM cell lines. Using 500 nM ITF2357, a concentration potentially achievable in vivo, viability of KAS-6/1 IL-6 dependent myeloma cells was reduced to 28% of control at 24 hrs and 2% of control at 48 hours (Figure 1). In contrast, viability of normal PBMCs was 100% at 24 hours and 80% at 48 hours (Figure 2). U266 and 8226 myeloma cells were found to be sensitive to ITF-2357 in a similar fashion with U266 being least sensitive. Cell death proceeded via apoptosis as measured using Annexin V/propidium iodide staining. ITF 2357 was superior to suberoylanilide hydroxamic acid (SAHA) at inhibition of stromal cell IL-6 production. IL-1beta (10 pg/ml) was used to stimulate bone marrow stromal cell IL-6 production (105 ng/ml) after 48 hours. Concentration of ITF2357:Stromal Cell IL-6 production after 48 hours were as follows - 10 nM: 78 ng/ml; 100 nM: 79 ng/ml; 1000 nM; 32 ng/ml. SAHA at similar concentrations showed no significant decrease in stromal cell IL-6 production compared with the no drug control. In summary, ITF2357 induces significant myeloma cell apoptosis and can inhibit stromal cell IL-6 production. It represents an attractive therapeutic candidate for MM clinical trials. Figure Figure Figure Figure


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2022-2022
Author(s):  
Hua Cao ◽  
Rui Gao Fei ◽  
Albert A. Bowers ◽  
Thomas J. Greshock ◽  
Tenaya Newkirt ◽  
...  

Abstract Abstract 2022 Poster Board I-1044 Previous studies have demonstrated that Histone Deacetylase (HDAC) inhibitors such as butyrate and several short chain fatty acids, can induce fetal hemoglobin in humans and animal models; however induction of Hb F is achieved in relatively high concentrations of these compounds. We have previously investigated the induction of human γ globin gene activity by the prototypical HDAC inhibitor, FK228. The results demonstrated that FK228 is a more potent γ globin gene inducer compared to other HDAC inhibitors we have tested before (Am J Hematol. 12:981). In this study, we investigated the induction of human γ globin gene function of largazole and it's thiol analogue in vitro in cultures of normal human adult BFUe and in vivo in the mice carrying a human γ globin transgene. Largazole is a HDAC inhibitor which was recently isolated from a marine vyanobacterium by Luesch and co-workers. Structural features of largazole, a macrocyclic depsopeptide, closely resemble those of FK228, FR901375 and spiruchostatin. We have reported that largazole and numerous synthetic analogues are highly potent Class I histone deacetylase inhibitors (J Am Chem Soc. 130:11219, J Am Chem Soc. 2009 Feb 4). We used flow cytometry to measure the in vitro effect of largazole and it's derivatives on the frequency of HbF-positive erythroblasts in BFUe cultures from normal individuals; real-time quantitative PCR (RT-qPCR) and high performance liquid chromatography (HPLC) were used to measure the in vivo effects of largazole on human γ globin induction in γ transgenic mice carrying a human γ globin gene.. Our results show that largazole and it's thiol derivative are potent γ hemoglobin gene inducers. In the human BFUe cultures, largazole increased the levels of fetal hemoglobin positive cells from 21.9% (control level) to 62.8% at a concentration of 0.1μM; largazole thiol increased the levels of fetal hemoglobin positive cells to 62.0% at a concentration of 1μM. Transgenic mice carrying the human μLCR Aγ construct continue to express the human γ gene in the adult stage (Blood. 77:1326). Largazole was administered through IP injection at the dosages of 0.3mg/kg/day and 0.6mg/kg/day, 5 days per week, for 2 weeks to two cohorts of transgenic mice. Largazole at the dose of 0.3mg/kg/day increased the level of human γ mRNA at the end of injection by 160.7%; at a dose of 0.6mg/kg/day human γ mRNA increased by 174.7%. At the 0.6mg/kg/day dosage the level of fetal hemoglobin in the peripheral blood of the animals increased by 3.4 and 3.2 fold at day 21 and day 28, respectively. These results provide strong in vitro and in vivo evidence that Largazole and it's thiol analogue are potent HbF inducers acting at low concentrations, and thus provide promising alternatives to compounds currently considered for induction of Hb F in patients with sickle cell disease and thalassemia. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 25 (19) ◽  
pp. 8456-8464 ◽  
Author(s):  
Xuan Zhao ◽  
Thomas Sternsdorf ◽  
Timothy A. Bolger ◽  
Ronald M. Evans ◽  
Tso-Pang Yao

ABSTRACT The class II deacetylase histone deacetylase 4 (HDAC4) negatively regulates the transcription factor MEF2. HDAC4 is believed to repress MEF2 transcriptional activity by binding to MEF2 and catalyzing local histone deacetylation. Here we report that HDAC4 also controls MEF2 by a novel SUMO E3 ligase activity. We show that HDAC4 interacts with the SUMO E2 conjugating enzyme Ubc9 and is itself sumoylated. The overexpression of HDAC4 leads to prominent MEF2 sumoylation in vivo, whereas recombinant HDAC4 stimulates MEF2 sumoylation in a reconstituted system in vitro. Importantly, HDAC4 promotes sumoylation on a lysine residue that is also subject to acetylation by a MEF2 coactivator, the acetyltransferase CBP, suggesting a possible interplay between acetylation and sumoylation in regulating MEF2 activity. Indeed, MEF2 acetylation is correlated with MEF2 activation and dynamically induced upon muscle cell differentiation, while sumoylation inhibits MEF2 transcriptional activity. Unexpectedly, we found that HDAC4 does not function as a MEF2 deacetylase. Instead, the NAD+-dependent deacetylase SIRT1 can potently induce MEF2 deacetylation. Our studies reveal a novel regulation of MEF2 transcriptional activity by two distinct classes of deacetylases that affect MEF2 sumoylation and acetylation.


Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2615-2622 ◽  
Author(s):  
Laurence Catley ◽  
Ellen Weisberg ◽  
Yu-Tzu Tai ◽  
Peter Atadja ◽  
Stacy Remiszewski ◽  
...  

Abstract Histone deacetylase (HDAC) inhibitors are emerging as a promising new treatment strategy in hematologic malignancies. Here we show that NVP-LAQ824, a novel hydroxamic acid derivative, induces apoptosis at physiologically achievable concentrations (median inhibitory concentration [IC50] of 100 nM at 24 hours) in multiple myeloma (MM) cell lines resistant to conventional therapies. MM.1S myeloma cell proliferation was also inhibited when cocultured with bone marrow stromal cells, demonstrating ability to overcome the stimulatory effects of the bone marrow microenvironment. Importantly, NVP-LAQ824 also inhibited patient MM cell growth in a dose- and time-dependent manner. NVP-LAQ824-induced apoptotic signaling includes up-regulation of p21, caspase cascade activation, and poly (adenosine diphosphate [ADP]) ribose (PARP) cleavage. Apoptosis was confirmed with cell cycle analysis and annexin-propidium iodide staining. Interestingly, treatment of MM cells with NVPLAQ824 also led to proteasome inhibition, as determined by reduced proteasome chymotrypsin-like activity and increased levels of cellular polyubiquitin conjugates. Finally, a study using NVP-LAQ824 in a preclinical murine myeloma model provides in vivo relevance to our in vitro studies. Taken together, these findings provide the framework for NVP-LAQ824 as a novel therapeutic in MM. (Blood. 2003;102:2615-2622)


Sign in / Sign up

Export Citation Format

Share Document