scholarly journals Cotranscriptional Processing of Drosophila Histone mRNAs

2003 ◽  
Vol 23 (12) ◽  
pp. 4046-4055 ◽  
Author(s):  
Todd E. Adamson ◽  
David H. Price

ABSTRACT The 3′ ends of metazoan histone mRNAs are generated by specialized processing machinery that cleaves downstream of a conserved stem-loop structure. To examine how this reaction might be influenced by transcription, we used a Drosophila melanogaster in vitro system that supports both processes. In this system the complete synthesis of histone mRNA, including transcription initiation and elongation, followed by 3′ end formation, occurred at a physiologically significant rate. Processing of free transcripts was efficient and occurred with a t 1/2 of less than 1 min. Divalent cations were not required, but nucleoside triphosphates (NTPs) stimulated the rate of cleavage slightly. Isolated elongation complexes encountered a strong arrest site downstream of the mature histone H4 3′ end. In the presence of NTPs, transcripts in these arrested complexes were processed at a rate similar to that of free RNA. Removal of NTPs dramatically reduced this rate, potentially due to concealment of the U7 snRNP binding element. The arrest site was found to be a conserved feature located 32 to 35 nucleotides downstream of the processing site on the H4, H2b, and H3 genes. The significance of the newly discovered arrest sites to our understanding of the coupling between transcription and RNA processing on the one hand and histone gene expression on the other is discussed.

1999 ◽  
Vol 19 (1) ◽  
pp. 835-845 ◽  
Author(s):  
Zeng-Feng Wang ◽  
Thomas C. Ingledue ◽  
Zbigniew Dominski ◽  
Ricardo Sanchez ◽  
William F. Marzluff

ABSTRACT Translationally inactive histone mRNA is stored in frog oocytes, and translation is activated at oocyte maturation. The replication-dependent histone mRNAs are not polyadenylated and end in a conserved stem-loop structure. There are two proteins (SLBPs) which bind the 3′ end of histone mRNA in frog oocytes. SLBP1 participates in pre-mRNA processing in the nucleus. SLBP2 is oocyte specific, is present in the cytoplasm, and does not support pre-mRNA processing in vivo or in vitro. The stored histone mRNA is bound to SLBP2. As oocytes mature, SLBP2 is degraded and a larger fraction of the histone mRNA is bound to SLBP1. The mechanism of activation of translation of histone mRNAs may involve exchange of SLBPs associated with the 3′ end of histone mRNA.


Author(s):  
Zbigniew Dominski ◽  
Liang Tong

In animal cells, replication-dependent histone mRNAs end with a highly conserved stem–loop structure followed by a 4- to 5-nucleotide single-stranded tail. This unique 3′ end distinguishes replication-dependent histone mRNAs from all other eukaryotic mRNAs, which end with a poly(A) tail produced by the canonical 3′-end processing mechanism of cleavage and polyadenylation. The pioneering studies of Max Birnstiel's group demonstrated nearly 40 years ago that the unique 3′ end of animal replication-dependent histone mRNAs is generated by a distinct processing mechanism, whereby histone mRNA precursors are cleaved downstream of the stem–loop, but this cleavage is not followed by polyadenylation. The key role is played by the U7 snRNP, a complex of a ∼60 nucleotide U7 snRNA and many proteins. Some of these proteins, including the enzymatic component CPSF73, are shared with the canonical cleavage and polyadenylation machinery, justifying the view that the two metazoan pre-mRNA 3′-end processing mechanisms have a common evolutionary origin. The studies on U7 snRNP culminated in the recent breakthrough of reconstituting an entirely recombinant human machinery that is capable of accurately cleaving histone pre-mRNAs, and determining its structure in complex with a pre-mRNA substrate (with 13 proteins and two RNAs) that is poised for the cleavage reaction. The structure uncovered an unanticipated network of interactions within the U7 snRNP and a remarkable mechanism of activating catalytically dormant CPSF73 for the cleavage. This work provides a conceptual framework for understanding other eukaryotic 3′-end processing machineries.


Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1517
Author(s):  
Rebecca S. Brown ◽  
Lisa Kim ◽  
Margaret Kielian

Alphaviruses are small enveloped viruses with positive-sense RNA genomes. During infection, the alphavirus capsid protein (Cp) selectively packages and assembles with the viral genomic RNA to form the nucleocapsid core, a process critical to the production of infectious virus. Prior studies of the alphavirus Semliki Forest virus (SFV) showed that packaging and assembly are promoted by Cp binding to multiple high affinity sites on the genomic RNA. Here, we developed an in vitro Cp binding assay based on fluorescently labeled RNA oligos. We used this assay to explore the RNA sequence and structure requirements for Cp binding to site #1, the top binding site identified on the genomic RNA during all stages of virus assembly. Our results identify a stem-loop structure that promotes specific binding of the SFV Cp to site #1 RNA. This structure is also recognized by the Cps of the related alphaviruses chikungunya virus and Ross River virus.


1985 ◽  
Vol 5 (2) ◽  
pp. 380-389
Author(s):  
S M Hanly ◽  
G C Bleecker ◽  
N Heintz

We have examined the nucleotide sequences necessary for transcription of a human histone H4 gene in vitro. Maximal transcription of the H4 promoter requires, in addition to the TATA box and cap site, promoter elements between 70 and 110 nucleotides upstream from the transcription initiation site. These distal promoter elements are recognized preferentially in extracts from synchronized S-phase HeLa cells. The inability of non-S-phase nuclear extracts to recognize the H4 upstream sequences reflects a specific lack of a transcription factor which interacts with those sequences. These results indicate that the cell cycle regulation of human histone gene expression involves both a specific transcription factor and distal transcription signals in the H4 promoter.


1990 ◽  
Vol 10 (3) ◽  
pp. 939-946 ◽  
Author(s):  
R Singh ◽  
S Gupta ◽  
R Reddy

The cap structure of U6 small nuclear RNA (snRNA) is gamma-monomethyl phosphate and is distinct from other known RNA cap structures (R. Singh and R. Reddy, Proc. Natl. Acad. Sci. USA 86:8280-8283, 1989). Here we show that the information for capping the U6 snRNA in vitro is within the initial 25 nucleotides of the U6 RNA. The capping determinant in mammalian U6 snRNA is a bipartite element--a phylogenetically conserved stem-loop structure and an AUAUAC sequence, or a part thereof, following this stem-loop. Wild-type capping efficiency was obtained when the AUAUAC motif immediately followed the stem-loop and when the gamma-phosphate of the initiation nucleotide was in close proximity to the capping determinant. Incorporation of a synthetic stem-loop followed by an AUAUAC sequence is sufficient to covert a noncapped heterologous transcript into a capped transcript. Transcripts with the initial 32 nucleotides of Saccharomyces cerevisiae U6 snRNA are accurately capped in HeLa cell extract, indicating that capping machinery from HeLa cells can cap U6 snRNA from an evolutionarily distant eucaryote. The U6-snRNA-specific capping is unusual in that it is RNA sequence dependent, while the capping of mRNAs and other U snRNAs is tightly coupled to transcription and is independent of the RNA sequence.


1993 ◽  
Vol 13 (11) ◽  
pp. 6931-6940 ◽  
Author(s):  
P Somogyi ◽  
A J Jenner ◽  
I Brierley ◽  
S C Inglis

The genomic RNA of the coronavirus infectious bronchitis virus contains an efficient ribosomal frameshift signal which comprises a heptanucleotide slippery sequence followed by an RNA pseudoknot structure. The presence of the pseudoknot is essential for high-efficiency frameshifting, and it has been suggested that its function may be to slow or stall the ribosome in the vicinity of the slippery sequence. To test this possibility, we have studied translational elongation in vitro on mRNAs engineered to contain a well-defined pseudoknot-forming sequence. Insertion of the pseudoknot at a specific location within the influenza virus PB1 mRNA resulted in the production of a new translational intermediate corresponding to the size expected for ribosomal arrest at the pseudoknot. The appearance of this protein was transient, indicating that it was a true paused intermediate rather than a dead-end product, and mutational analysis confirmed that its appearance was dependent on the presence of a pseudoknot structure within the mRNA. These observations raise the possibility that a pause is required for the frameshift process. The extent of pausing at the pseudoknot was compared with that observed at a sequence designed to form a simple stem-loop structure with the same base pairs as the pseudoknot. This structure proved to be a less effective barrier to the elongating ribosome than the pseudoknot and in addition was unable to direct efficient ribosomal frameshifting, as would be expected if pausing plays an important role in frameshifting. However, the stem-loop was still able to induce significant pausing, and so this effect alone may be insufficient to account for the contribution of the pseudoknot to frameshifting.


2005 ◽  
Vol 393 (1) ◽  
pp. 373-379 ◽  
Author(s):  
Akio Kanai ◽  
Asako Sato ◽  
Jun Imoto ◽  
Masaru Tomita

Using a stem–loop RNA oligonucleotide (19-mer) containing an AUG sequence in the loop region as a probe, we screened the protein library from a hyperthermophilic archaeon, Pyrococcus furiosus, and found that a flavin-dependent thymidylate synthase, Pf-Thy1 (Pyrococcus furiosus thymidylate synthase 1), possessed RNA-binding activity. Recombinant Pf-Thy1 was able to bind to the stem–loop structure at a high temperature (75 °C) with an apparent dissociation constant of 0.6 μM. A similar stem–loop RNA structure was located around the translation start AUG codon of Pf-Thy1 RNA, and gel-shift analysis revealed that Pf-Thy1 could also bind to this stem–loop structure. In vitro translation analysis using chimaeric constructs containing the stem–loop sequence in their Pf-Thy1 RNA and a luciferase reporter gene indicated that the stem–loop structure acted as an inhibitory regulator of translation by preventing the binding of its Shine–Dalgarno-like sequence by positioning it in the stem region. Addition of Pf-Thy1 into the in vitro translation system also inhibited translation. These results suggested that this class of thymidylate synthases may autoregulate their own translation in a manner analogous to that of the well characterized thymidylate synthase A proteins, although there is no significant amino acid sequence similarity between them.


2007 ◽  
Vol 81 (13) ◽  
pp. 7077-7085 ◽  
Author(s):  
Kelly S. Colletti ◽  
Kate E. Smallenburg ◽  
Yiyang Xu ◽  
Gregory S. Pari

ABSTRACT Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.


1989 ◽  
Vol 9 (11) ◽  
pp. 5134-5142 ◽  
Author(s):  
M Kozak

This paper describes in vitro experiments with two types of intramolecular duplex structures that inhibit translation in cis by preventing the formation of an initiation complex or by causing the complex to be abortive. One stem-loop structure (delta G = -30 kcal/mol) prevented mRNA from engaging 40S subunits when the hairpin occurred 12 nucleotides (nt) from the cap but had no deleterious effect when it was repositioned 52 nt from the cap. This result confirms prior in vivo evidence that the 40S subunit-factor complex, once bound to mRNA, has considerable ability to penetrate secondary structure. Consequently, translation is most sensitive to secondary structure at the entry site for ribosomes, i.e., the 5' end of the mRNA. The second stem-loop structure (hp7; delta G = -61 kcal/mol, located 72 nt from the cap) was too stable to be unwound by 40S ribosomes, hp7 did not prevent a 40S ribosomal subunit from binding but caused the 40S subunit to stall on the 5' side of the hairpin, exactly as the scanning model predicts. Control experiments revealed that 80S elongating ribosomes could disrupt duplex structures, such as hp7, that were too stable to be penetrated by the scanning 40S ribosome-factor complex. A third type of base-paired structure shown to inhibit translation in vivo involves a long-range interaction between the 5' and 3' noncoding sequences.


2000 ◽  
Vol 74 (12) ◽  
pp. 5639-5646 ◽  
Author(s):  
David Harrich ◽  
C. William Hooker ◽  
Emma Parry

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) RNA genome is flanked by a repeated sequence (R) that is required for HIV-1 replication. The first 57 nucleotides of R form a stable stem-loop structure called the transactivation response element (TAR) that can interact with the virally encoded transcription activator protein, Tat, to promote high levels of gene expression. Recently, we demonstrated that TAR is also important for efficient HIV-1 reverse transcription, since HIV-1 mutated in the upper stem-loop of TAR showed a reduced ability both to initiate and to complete reverse transcription. We have analyzed a series of HIV-1 mutant viruses to better defined the structural or sequence elements required for natural endogenous reverse transcription and packaging of virion RNA. Our results indicate that the requirement for TAR in reverse transcription is conformation dependent, since mutants with mutations that alter the upper stem-loop orientation are defective for reverse transcription initiation and have minor defects in RNA packaging. In contrast, TAR mutations that allowed the formation of alternative upper stem-loop structure greatly reduced RNA packaging but did not affect reverse transcription efficiency. These results are consistent with direct involvement of the upper stem-loop structure in packaging of genomic RNA and suggest that the TAR RNA stem-loop from nucleotide +18 to +42 interacts with other components of the reverse transcription initiation complex to promote efficient reverse transcription.


Sign in / Sign up

Export Citation Format

Share Document