scholarly journals Actin Cytoskeleton Regulates Calcium Dynamics and NFAT Nuclear Duration

2004 ◽  
Vol 24 (4) ◽  
pp. 1628-1639 ◽  
Author(s):  
Fabiola V. Rivas ◽  
James P. O'Keefe ◽  
Maria-Luisa Alegre ◽  
Thomas F. Gajewski

ABSTRACT T-cell activation by antigen-presenting cells is accompanied by actin polymerization, T-cell receptor (TCR) capping, and formation of the immunological synapse. However, whether actin-dependent events are required for T-cell function is poorly understood. Herein, we provide evidence for an unexpected negative regulatory role of the actin cytoskeleton on TCR-induced cytokine production. Disruption of actin polymerization resulted in prolonged intracellular calcium elevation in response to anti-CD3, thapsigargin, or phorbol myristate acetate plus ionomycin, leading to persistent NFAT (nuclear factor of activated T cells) nuclear duration. These events were dominant, as the net effect of actin blockade was augmented interleukin 2 promoter activity. Increased surface expression of the plasma membrane Ca2+ ATPase was observed upon stimulation, which was inhibited by cytochalasin D, suggesting that actin polymerization contributes to calcium export. Our results imply a novel role for the actin cytoskeleton in modulating the duration of Ca2+-NFAT signaling and indicate that actin dynamics regulate features of T-cell activation downstream of receptor clustering.

Blood ◽  
2008 ◽  
Vol 112 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Yanping Huang ◽  
Erin O. Comiskey ◽  
Renell S. Dupree ◽  
Shuixing Li ◽  
Anthony J. Koleske ◽  
...  

Abstract Actin dynamics during T-cell activation are controlled by the coordinate action of multiple actin regulatory proteins, functioning downstream of a complex network of kinases and other signaling molecules. The c-Abl nonreceptor tyrosine kinase regulates actin responses in nonhematopoietic cells, but its function in T cells is poorly understood. Using kinase inhibitors, RNAi, and conditional knockout mice, we investigated the role of c-Abl in controlling the T-cell actin response. We find that c-Abl is required for normal actin polymerization and lamellipodial spreading at the immune synapse, and for downstream events leading to efficient interleukin-2 production. c-Abl also plays a key role in signaling chemokine-induced T-cell migration. c-Abl is required for the appropriate function of 2 proteins known to be important for controlling actin responses to T-cell receptor (TCR) engagement, the actin-stabilizing adapter protein HS1, and the Rac1-dependent actin polymerizing protein WAVE2. c-Abl binds to phospho-HS1 via its SH2 domains and is required for full tyrosine phosphorylation of HS1 during T-cell activation. In addition, c-Abl is required for normal localization of WAVE2 to the immune synapse (IS). These studies identify c-Abl as a key player in the signaling cascade, leading to actin reorganization during T-cell activation.


Science ◽  
2021 ◽  
Vol 372 (6543) ◽  
pp. eaba4220 ◽  
Author(s):  
Tao Yue ◽  
Xiaoming Zhan ◽  
Duanwu Zhang ◽  
Ruchi Jain ◽  
Kuan-wen Wang ◽  
...  

Reactive oxygen species (ROS) increase in activated T cells because of metabolic activity induced to support T cell proliferation and differentiation. We show that these ROS trigger an oxidative stress response that leads to translation repression. This response is countered by Schlafen 2 (SLFN2), which directly binds transfer RNAs (tRNAs) to protect them from cleavage by the ribonuclease angiogenin. T cell–specific SLFN2 deficiency results in the accumulation of tRNA fragments, which inhibit translation and promote stress-granule formation. Interleukin-2 receptor β (IL-2Rβ) and IL-2Rγ fail to be translationally up-regulated after T cell receptor stimulation, rendering SLFN2-deficient T cells insensitive to interleukin-2’s mitogenic effects. SLFN2 confers resistance against the ROS-mediated translation-inhibitory effects of oxidative stress normally induced by T cell activation, permitting the robust protein synthesis necessary for T cell expansion and immunity.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Abstract Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


Blood ◽  
2000 ◽  
Vol 96 (6) ◽  
pp. 2181-2190 ◽  
Author(s):  
Maria Paola Martelli ◽  
Huamao Lin ◽  
Weiguo Zhang ◽  
Lawrence E. Samelson ◽  
Barbara E. Bierer

Activation of T cells can be initiated through cell surface molecules in addition to the T-cell receptor-CD3 (TCR-CD3) complex. In human T cells, ligation of the CD2 molecule by mitogenic pairs of anti-CD2 monoclonal antibodies activates T cells via biochemical signaling pathways similar but not identical to those elicited on TCR engagement. This study describes a key role for the p36/38 membrane adapter protein linker for T cell activation (LAT) in CD2-mediated T-cell activation. Following ligation of CD2 on the surface of the Jurkat T-cell line and human purified T cells, LAT was tyrosine phosphorylated and shown to associate in vivo with a number of other tyrosine phosphorylated proteins including PLCγ-1, Grb-2, and SLP-76. Using Jurkat cell lines deficient in ZAP70/Syk (P116) or LAT (ANJ3) expression, CD2-dependent PLCγ-1 and SLP-76 tyrosine phosphorylation required expression both of ZAP70 or Syk and of LAT. As predicted, the absence of either LAT or ZAP70/Syk kinases correlated with a defect in the induction of nuclear factor of activated T cells (NFAT) transcriptional activity, activation of the interleukin-2 promoter, and ERK phosphorylation following CD2 stimulation. These data suggest that LAT is an adapter protein important for the regulation of CD2-mediated T-cell activation.


2017 ◽  
Vol 114 (21) ◽  
pp. E4175-E4183 ◽  
Author(s):  
King Lam Hui ◽  
Arpita Upadhyaya

T-cell receptor (TCR) triggering and subsequent T-cell activation are essential for the adaptive immune response. Recently, multiple lines of evidence have shown that force transduction across the TCR complex is involved during TCR triggering, and that the T cell might use its force-generation machinery to probe the mechanical properties of the opposing antigen-presenting cell, giving rise to different signaling and physiological responses. Mechanistically, actin polymerization and turnover have been shown to be essential for force generation by T cells, but how these actin dynamics are regulated spatiotemporally remains poorly understood. Here, we report that traction forces generated by T cells are regulated by dynamic microtubules (MTs) at the interface. These MTs suppress Rho activation, nonmuscle myosin II bipolar filament assembly, and actin retrograde flow at the T-cell–substrate interface. Our results suggest a novel role of the MT cytoskeleton in regulating force generation during T-cell activation.


Blood ◽  
2010 ◽  
Vol 116 (18) ◽  
pp. 3475-3484 ◽  
Author(s):  
Tobias Woehrle ◽  
Linda Yip ◽  
Abdallah Elkhal ◽  
Yuka Sumi ◽  
Yu Chen ◽  
...  

Abstract Engagement of T cells with antigen-presenting cells requires T-cell receptor (TCR) stimulation at the immune synapse. We previously reported that TCR stimulation induces the release of cellular adenosine-5′-triphosphate (ATP) that regulates T-cell activation. Here we tested the roles of pannexin-1 hemichannels, which have been implicated in ATP release, and of various P2X receptors, which serve as ATP-gated Ca2+ channels, in events that control T-cell activation. TCR stimulation results in the translocation of P2X1 and P2X4 receptors and pannexin-1 hemichannels to the immune synapse, while P2X7 receptors remain uniformly distributed on the cell surface. Removal of extracellular ATP or inhibition, mutation, or silencing of P2X1 and P2X4 receptors inhibits Ca2+ entry, nuclear factors of activated T cells (NFAT) activation, and induction of interleukin-2 synthesis. Inhibition of pannexin-1 hemichannels suppresses TCR-induced ATP release, Ca2+ entry, and T-cell activation. We conclude that pannexin-1 hemichannels and P2X1 and P2X4 receptors facilitate ATP release and autocrine feedback mechanisms that control Ca2+ entry and T-cell activa-tion at the immune synapse.


Blood ◽  
1991 ◽  
Vol 77 (1) ◽  
pp. 84-93 ◽  
Author(s):  
DR Sutherland ◽  
E Yeo ◽  
A Ryan ◽  
GB Mills ◽  
D Bailey ◽  
...  

Abstract We have identified and biochemically characterized an antigen, 8A3, which is expressed on activated T lymphoblasts and activated platelets. Monoclonal antibodies to 8A3 were raised against the primitive lymphoid/myeloid cell line KG1a and additionally bound to the erythroleukemia-derived cell line HEL, whilst exhibiting little or no reactivity with a panel of other hematopoietic cell lines. The 8A3 antigen was expressed on poorly differentiated T-cell leukemias and on phytohemagglutinin-activated T-cells maintained in interleukin-2 (7,000 sites/cell). This antigen, though not detected on resting platelets, was expressed on thrombin-activated platelets (2,000 sites/platelet). Antibodies to 8A3 identified polypeptides of Mr 170,000 and 150,000 in lysates of surface-iodinated KG1a cells, T lymphoblasts, and activated platelets under both reducing and nonreducing conditions. However, peptide mapping and susceptibily to glycosidases indicated that the 8A3 antigen was a monomeric glycoprotein of Mr 170,000 which contained two N-linked endoglycosidase H-sensitive glycans, and that the Mr 150,000 structure was derived from it by proteolytic degradation. The 8A3 antigen was not detectably phosphorylated in KG1a cells in vivo, nor did immune complexes containing it exhibit kinase activity in vitro. Structural and serologic characteristics of the 8A3 antigen indicate that it is different from other previously described leukocyte activation antigens including transferrin receptors, interleukin-2 receptors, members of the integrin family of adhesion molecules, or “restricted” members of the leukocyte-common antigen/CD45 cluster. Furthermore, the 8A3 antigen does not appear to be related to the other previously described activation-specific platelet molecule, GMP140/PADGEM. This antibody may be useful in monitoring T-cell activation status in some clinical situations and in characterizing clinically relevant activation-associated platelet membrane alterations.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3299-3299
Author(s):  
Esther M. Lafuente ◽  
Erica M. Constantine ◽  
Matthew Salanga ◽  
Vassiliki A. Boussiotis

Abstract T cell receptor (TCR) ligation induces rapid polarization of the actin cytoskeleton resulting in the formation and stabilization of the immunological synapse (IS), recruitment of signaling molecules, and initiation of signaling cascades of T cell activation. Actin remodeling is essential for these events and is mandatory for T cell activation. Specific recruitment, redistribution and organization of signaling molecules in the IS is facilitated by lipid raft microdomains, which provide a scafold for focal protein assembly. Fyn and ZAP-70 are the most proximal TCR signaling molecules that localized in the IS and are redistributed in the lipid rafts during T cell activation. Currently, it is poorly understood how signals originating from the activated TCR are linked to the cytoskeletal rearrangement and the focal redistribution of signaling proteins. Recently, we identified RIAM, a novel adaptor molecule that contains a RA (Ras Association) domain, a PH (Plekstrin Homology) domain and proline-rich motifs. RIAM interacts specifically with active GTP-bound Rap1 and with regulators of the actin cytoskeleton Evl, VASP and Profilin. Profilin associates with G-actin and promotes actin polymerization by adding actin monomers to the barbed ends of F-actin. Ena/VASP family proteins are cytoskeletal proteins and regulate actin dynamics. Via these interactions, RIAM functions as a regulator of the actin cytoskeleton. To examine whether RIAM plays a role in the local reorganization of the actin cytoskeleton during IS formation, stable GFP-transfected Jurkat T cells were incubated with Raji B cells as APC, in the presence or absence of SEE. T cell:APC conjugates and formation of IS were examined by confocal microscopy. Synapse formation between GFP-Jurkat cells and Raji B cells was detected only in the presence of SEE. Under these conditions, polymerized (F) actin was highly recruited at the IS, as determined by phalloidin staining. Staining with RIAM-specific antibody indicated that in the absence of antigen, RIAM was diffusely expressed in the cytoplasm and at the plasma membrane. Impressively, upon incubation with SEE loaded Raji cells, RIAM was redistributed at the IS where it co-localized with polymerized (F) actin. Staining with ZAP-70 specific antibody revealed that ZAP-70 was also recruited at the IS upon activation and co-localized with RIAM and polymerized (F) actin. Sucrose gradient centrifugation indicated that RIAM translocated to the lipid rafts and co-localized in the same raft fraction with fyn and ZAP-70. RIAM was also a substrate of fyn and ZAP-70, which induced its tyrosine phosphorylation. Co-expression studies, by transfection of RIAM with fyn or ZAP-70 cDNA in COS cells, indicated that RIAM was a specific substrate of fyn and ZAP-70 but not lck. In vivo association of endogenous RIAM with fyn and ZAP-70 was also observed in primary T cells and in RIAM-transfected Jurkat cells and this interaction was highly upregulated upon activation. In the same complex, RIAM associated with grb2, crkL and the cytoskeletal proteins VASP and Profilin, indicating that RIAM functions as a link between the actin cytoskeleton and TCR signaling. Taken together these observations indicate a unique role of RIAM as an adaptor protein integrating TCR-mediated events that result in focal redistribution of polymerized actin, recruitment of signaling molecules at the IS and initiation of downstream signaling pathways.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Yury Rubtsov ◽  
Кirill Goryunov ◽  
Аndrey Romanov ◽  
Yulia Suzdaltseva ◽  
George Sharonov ◽  
...  

Mesenchymal stromal cells (MSC) control excessive inflammation and create a microenvironment for tissue repair protecting from chronic inflammation and tissue fibrosis. We examined the molecular mechanisms of MSC immunomodulatory function in mixed cultures of human adipose-derived MSC with lymphocytes. Our data show that MSC promote unstimulated lymphocyte survival potentially by an increase in antigen presentation. Under inflammatory conditions, mimicked by stimulation of TCR in lymphocytes, MSC suppress activation and proliferation of stimulated T cells. Immunosuppression is accompanied by downregulation of IL-2Rαthat negatively affects the survival of activated T cells. MSC upregulate transcription of indolamine-2,3-dioxygenase (IDO) and inducible NO synthase (iNOS), which generate products negatively affecting T cell function. Both MSC and lymphocytes dramatically increase the surface ICAM-1 level in mixed cultures. Antibody-mediated blockage of surface ICAM-1 partially releases MSC-mediated immune suppression in vitro. Our data suggest that MSC have cell-intrinsic molecular programs depending on the inflammatory microenvironment. We speculate that MSC sense soluble factors and respond by surface ICAM-1 upregulation. ICAM-1 is involved in the control of T cell activation leading to immunosuppression or modest stimulation depending on the T cell status. Immunomodulation by MSC ranging from support of naive T cell survival to immunosuppression of activated T cells may affect the tissue microenvironment protecting from aberrant regeneration.


2005 ◽  
Vol 360 (1461) ◽  
pp. 1663-1672 ◽  
Author(s):  
Karina F Meiri

The ability of polarized cells to initiate and sustain directional responses to extracellular signals is critically dependent on direct communication between spatially organized signalling modules in the membrane and the underlying cytoskeleton. Pioneering work in T cells has shown that the assembly of signalling modules critically depends on the functional compartmentalization of membrane lipids into ordered microdomains or lipid rafts. The significance of rafts in T cell activation lies not only in their ability to recruit the signalling partners that eventually assemble into a mature immunological synapse but also in their ability to regulate actin dynamics and recruit cytoskeletal associated proteins, thereby achieving the structural polarization underlying stability of the synapse—a critical prerequisite for activation to be sustained. Lipid rafts vary quite considerably in size and visualizing the smallest of them in vivo has been challenging. Nonetheless it is now been shown quite convincingly that a surprisingly large proportion—in the order of 50%—of external membrane lipids (chiefly cholesterol and glycosphingolipids) can be dynamically localized in these liquid ordered rafts. Complementary inner leaflet rafts are less well characterized, but contain phosphoinositides as an important functional component that is crucial for regulating the behaviour of the actin cytoskeleton. This paper provides an overview of the interdependency between signalling and cytoskeletal polarization, and in particular considers how regulation of the cytoskeleton plays a crucial role in the consolidation of rafts and their stabilization into the immunological synapse.


Sign in / Sign up

Export Citation Format

Share Document