scholarly journals Human Enhancer of Invasion-Cluster, a Coiled-Coil Protein Required for Passage through Mitosis

2004 ◽  
Vol 24 (9) ◽  
pp. 3957-3971 ◽  
Author(s):  
Margret B. Einarson ◽  
Edna Cukierman ◽  
Duane A. Compton ◽  
Erica A. Golemis

ABSTRACT In a cross-species overexpression approach, we used the pseudohyphal transition of Saccharomyces cerevisiae as a model screening system to identify human genes that regulate cell morphology and the cell cycle. Human enhancer of invasion-cluster (HEI-C), encoding a novel evolutionarily conserved coiled-coil protein, was isolated in a screen for human genes that induce agar invasion in S. cerevisiae. In human cells, HEI-C is primarily localized to the spindle during mitosis. Depletion of HEI-C in vivo with short interfering RNAs results in severe mitotic defects. Analysis by immunofluorescence, flow cytometry analysis, and videomicroscopy indicates that HEI-C-depleted cells form metaphase plates with normal timing after G2/M transition, although in many cases cells have disorganized mitotic spindles. Subsequently, severe defects occur at the metaphase-anaphase transition, characterized by a significant delay at this stage or, more commonly, cellular disintegration accompanied by the display of classic biochemical markers of apoptosis. These mitotic defects occur in spite of the fact that HEI-C-depleted cells retain functional cell cycle checkpoints, as these cells arrest normally following nocodazole or hydroxyurea treatment. These results place HEI-C as a novel regulator of spindle function and integrity during the metaphase-anaphase transition.

2001 ◽  
Vol 280 (5) ◽  
pp. R1555-R1563 ◽  
Author(s):  
Robert M. Douglas ◽  
Tian Xu ◽  
Gabriel G. Haddad

We and others recently demonstrated that Drosophila melanogaster embryos arrest development and embryonic cells cease dividing when they are deprived of O2. To further characterize the behavior of these embryos in response to O2 deprivation and to define the O2-sensitive checkpoints in the cell cycle, embryos undergoing nuclear cycles 3–13 were subjected to O2deprivation and examined by confocal microscopy under control, hypoxic, and reoxygenation conditions. In vivo, real-time analysis of embryos carrying green fluorescent protein-kinesin demonstrated that cells arrest at two major points of the cell cycle, either at the interphase (before DNA duplication) or at metaphase, depending on the cell cycle phase at which O2 deprivation was induced. Immunoblot analysis of embryos whose cell divisions are synchronized by inducible String (cdc25 homolog) demonstrated that cyclin B was degraded during low O2 conditions in interphase-arrested embryos but not in those arrested in metaphase. Embryos resumed cell cycle activity within ∼20 min of reoxygenation, with very little apparent change in cell cycle kinetics. We conclude that there are specific points during the embryonic cell cycle that are sensitive to the O2 level in D. melanogaster. Given the fact that O2deprivation also influences the growth and development of other species, we suggest that similar hypoxia-sensitive cell cycle checkpoints may also exist in mammalian cells.


2007 ◽  
Vol 28 (4) ◽  
pp. 1313-1325 ◽  
Author(s):  
Meredith E. K. Calvert ◽  
Kristin M. Keck ◽  
Celeste Ptak ◽  
Jeffrey Shabanowitz ◽  
Donald F. Hunt ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the evolutionarily conserved nucleocytoplasmic shuttling protein Nap1 is a cofactor for the import of histones H2A and H2B, a chromatin assembly factor and a mitotic factor involved in regulation of bud formation. To understand the mechanism by which Nap1 function is regulated, Nap1-interacting factors were isolated and identified by mass spectrometry. We identified several kinases among these proteins, including casein kinase 2 (CK2), and a new bud neck-associated protein, Nba1. Consistent with our identification of the Nap1-interacting kinases, we showed that Nap1 is phosphorylated in vivo at 11 sites and that Nap1 is phosphorylated by CK2 at three substrate serines. Phosphorylation of these serines was not necessary for normal bud formation, but mutation of these serines to either alanine or aspartic acid resulted in cell cycle changes, including a prolonged S phase, suggesting that reversible phosphorylation by CK2 is important for cell cycle regulation. Nap1 can shuttle between the nucleus and cytoplasm, and we also showed that CK2 phosphorylation promotes the import of Nap1 into the nucleus. In conclusion, our data show that Nap1 phosphorylation by CK2 appears to regulate Nap1 localization and is required for normal progression through S phase.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 569-575 ◽  
Author(s):  
MW Long ◽  
N Williams ◽  
S Ebbe

Abstract The heterogeneity among immature megakaryocytes has been examined by physical properties, cell cycle status, and responsiveness to thrombopoietic stimulatory factor. Three types of immature megakaryocytes exist that can be recognized by acetylcholinesterase staining, nuclear shape, high nucleus/cytoplasm ratio, and small size (8--18 mu) with respect to mature megakaryocytes (greater than 18 mu). These three acetylcholinesterase-containing cell types are distinguished by their nuclear configuration: a round, indented, and lobed nucleus. The lobed cell type was found to overlap with and enhance detection of megakaryoblasts (stage I megakaryocytes). These cells had a sedimentation velocity range of 3.5--19.0 mm hr-1 and a density range of 1.072--1.095 g cm-3. Separation of these three classes of immature megakaryocytes was achieved by equilibrium density centrifugation with modal buoyant densities of 1.079 g cm-3 (round), 1.084 g cm-3 (indented), and 1.089 g cm-3 (lobed). In the presence of thrombopoietic stimulatory factor, the round nucleated cells, but not the indented or lobed nuclei morphology, were observed to develop into large mature megakaryocytes in 60-hr semisolid cell cultures. Development of two cell groups, or colonies of megakaryocytes, was not observed during this in vitro incubation period. In vivo treatment with hydroxyurea indicated that 57.5% +/- 19% of the round nucleus form were actively synthesizing DNA. No reduction in the numbers of indented or lobed nucleus forms were observed following hydroxyurea treatment. The data in this report strongly support the concept that these three types of immature megakaryocytes reflect the early maturation stages occurring in megakaryocyte differentiation.


2004 ◽  
Vol 24 (8) ◽  
pp. 3562-3576 ◽  
Author(s):  
Martin Schwickart ◽  
Jan Havlis ◽  
Bianca Habermann ◽  
Aliona Bogdanova ◽  
Alain Camasses ◽  
...  

ABSTRACT The anaphase-promoting complex (APC/C) is a large ubiquitin-protein ligase which controls progression through anaphase by triggering the degradation of cell cycle regulators such as securin and B-type cyclins. The APC/C is an unusually complex ligase containing at least 10 different, evolutionarily conserved components. In contrast to APC/C's role in cell cycle regulation little is known about the functions of individual subunits and how they might interact with each other. Here, we have analyzed Swm1/Apc13, a small subunit recently identified in the budding yeast complex. Database searches revealed proteins related to Swm1/Apc13 in various organisms including humans. Both the human and the fission yeast homologues are associated with APC/C subunits, and they complement the phenotype of an SWM1 deletion mutant of budding yeast. Swm1/Apc13 promotes the stable association with the APC/C of the essential subunits Cdc16 and Cdc27. Accordingly, Swm1/Apc13 is required for ubiquitin ligase activity in vitro and for the timely execution of APC/C-dependent cell cycle events in vivo.


2008 ◽  
Vol 183 (5) ◽  
pp. 777-783 ◽  
Author(s):  
Jeremy A. Daniel ◽  
Manuela Pellegrini ◽  
Ji-Hoon Lee ◽  
Tanya T. Paull ◽  
Lionel Feigenbaum ◽  
...  

Cellular responses to both physiological and pathological DNA double-strand breaks are initiated through activation of the evolutionarily conserved ataxia telangiectasia mutated (ATM) kinase. Upon DNA damage, an activation mechanism involving autophosphorylation has been reported to allow ATM to phosphorylate downstream targets important for cell cycle checkpoints and DNA repair. In humans, serine residues 367, 1893, and 1981 have been shown to be autophosphorylation sites that are individually required for ATM activation. To test the physiological importance of these sites, we generated a transgenic mouse model in which all three conserved ATM serine autophosphorylation sites (S367/1899/1987) have been replaced with alanine. In this study, we show that ATM-dependent responses at both cellular and organismal levels are functional in mice that express a triple serine mutant form of ATM as their sole ATM species. These results lend further support to the notion that ATM autophosphorylation correlates with the DNA damage–induced activation of the kinase but is not required for ATM function in vivo.


2007 ◽  
Vol 14 (3) ◽  
pp. 827-837 ◽  
Author(s):  
Salvatore Ulisse ◽  
Enke Baldini ◽  
Matteo Toller ◽  
Jean-Guy Delcros ◽  
Aurélie Guého ◽  
...  

Aurora-A kinase has recently been shown to be deregulated in thyroid cancer cells and tissues. Among the Aurora-A substrates identified, transforming acidic coiled-coil (TACC3), a member of the TACC family, plays an important role in cell cycle progression and alterations of its expression occur in different cancer tissues. In this study, we demonstrated the expression of the TACC3 gene in normal human thyroid cells (HTU5), and its modulation at both mRNA and protein levels during cell cycle. Its expression was found, with respect to HTU5 cells, unchanged in cells derived from a benign thyroid follicular tumor (HTU42), and significantly reduced in cell lines derived from follicular (FTC-133), papillary (B-CPAP), and anaplastic thyroid carcinomas (CAL-62 and 8305C). Moreover, in 16 differentiated thyroid cancer tissues, TACC3 mRNA levels were found, with respect to normal matched tissues, reduced by twofold in 56% of cases and increased by twofold in 44% of cases. In the same tissues, a correlation between the expression of the TACC3 and Aurora-A mRNAs was observed. TACC3 and Aurora-A interact in vivo in thyroid cells and both proteins localized onto the mitotic structure of thyroid cells. Finally, TACC3 localization on spindle microtubule was no more observed following the inhibition of Aurora kinase activity by VX-680. We propose that Aurora-A and TACC3 interaction is important to control the mitotic spindle organization required for proper chromosome segregation.


2007 ◽  
Vol 25 (14) ◽  
pp. 1852-1857 ◽  
Author(s):  
Peter J. Hornsby

Senescence was originally described as a terminal nondividing state of normal human cells reached after many cell divisions in culture. The cause was shown to be shortening of telomeres, leading to telomere dysfunction and cell cycle arrest. Subsequently, a more rapid, nontelomere-dependent form of senescence, often termed stress-induced premature senescence, was described. Mostly importantly, it occurs in response to activated oncogene products. Oncogene-induced senescence has been shown to play a role in tumor suppression in vivo; it does not seem to involve changes in telomeres. A second phenomenon that plays a role in tumor suppression, which does involve progressive telomere shortening, is crisis, the state that cells reach when cell cycle checkpoints are impaired and cells can no longer respond to telomere shortening or oncogene activation by entering senescence. These two processes, oncogene-induced senescence and telomere-based crisis, exert powerful anticancer effects.


Blood ◽  
1982 ◽  
Vol 59 (3) ◽  
pp. 569-575 ◽  
Author(s):  
MW Long ◽  
N Williams ◽  
S Ebbe

The heterogeneity among immature megakaryocytes has been examined by physical properties, cell cycle status, and responsiveness to thrombopoietic stimulatory factor. Three types of immature megakaryocytes exist that can be recognized by acetylcholinesterase staining, nuclear shape, high nucleus/cytoplasm ratio, and small size (8--18 mu) with respect to mature megakaryocytes (greater than 18 mu). These three acetylcholinesterase-containing cell types are distinguished by their nuclear configuration: a round, indented, and lobed nucleus. The lobed cell type was found to overlap with and enhance detection of megakaryoblasts (stage I megakaryocytes). These cells had a sedimentation velocity range of 3.5--19.0 mm hr-1 and a density range of 1.072--1.095 g cm-3. Separation of these three classes of immature megakaryocytes was achieved by equilibrium density centrifugation with modal buoyant densities of 1.079 g cm-3 (round), 1.084 g cm-3 (indented), and 1.089 g cm-3 (lobed). In the presence of thrombopoietic stimulatory factor, the round nucleated cells, but not the indented or lobed nuclei morphology, were observed to develop into large mature megakaryocytes in 60-hr semisolid cell cultures. Development of two cell groups, or colonies of megakaryocytes, was not observed during this in vitro incubation period. In vivo treatment with hydroxyurea indicated that 57.5% +/- 19% of the round nucleus form were actively synthesizing DNA. No reduction in the numbers of indented or lobed nucleus forms were observed following hydroxyurea treatment. The data in this report strongly support the concept that these three types of immature megakaryocytes reflect the early maturation stages occurring in megakaryocyte differentiation.


2005 ◽  
Vol 79 (23) ◽  
pp. 14899-14908 ◽  
Author(s):  
Wen Dong ◽  
Ulrich Kloz ◽  
Rosita Accardi ◽  
Sandra Caldeira ◽  
Wei-Min Tong ◽  
...  

ABSTRACT The oncoproteins E6 and E7 of human papillomavirus type 38 (HPV38) display several transforming activities in vitro, including immortalization of primary human keratinocytes. To evaluate the oncogenic activities of the viral proteins in an in vivo model, we generated transgenic mice expressing HPV38 E6 and E7 under the control of the bovine homologue of the human keratin 10 (K10) promoter. Two distinct lines of HPV38 E6/E7-expressing transgenic mice that express the viral genes at different levels were obtained. In both lines, HPV38 E6 and E7 induced cellular proliferation, hyperplasia, and dysplasia in the epidermis. The rate of occurrence of these events was proportional to the levels of HPV38 E6 and E7 expression in the two transgenic lines. Exposure of the epidermis of nontransgenic mice to UV led to p21WAF1 accumulation and cell cycle arrest. In contrast, keratinocytes from transgenic mice continued to proliferate and were not positive for p21WAF1, indicating that cell cycle checkpoints are altered in keratinocytes expressing the viral genes. Although the HPV38 E6/E7-expressing transgenic mice did not develop spontaneous tumors during their life span, two-stage carcinogen treatment led to a high incidence of papillomas, keratoacanthomas, and squamous-cell carcinomas in HPV38 mice compared with nontransgenic animals. Together, these data show that HPV38 E6 and E7 display transforming properties in vivo, providing further support for the role of HPV38 in carcinogenesis.


1995 ◽  
Vol 6 (4) ◽  
pp. 371-385 ◽  
Author(s):  
G J Den Haese ◽  
N Walworth ◽  
A M Carr ◽  
K L Gould

The Cdc2 protein kinase is a key regulator of the G1-S and G2-M cell cycle transitions in the fission yeast Schizosaccharomyces pombe. The activation of Cdc2 at the G2-M transition is triggered by dephosphorylation at a conserved tyrosine residue Y15. The level of Y15 phosphorylation is controlled by the Wee1 and Mik1 protein kinases acting in opposition to the Cdc25 protein phosphatase. Here, we demonstrate that Wee1 overexpression leads to a high stoichiometry of phosphorylation at a previously undetected site in S. pombe Cdc2, T14. T14 phosphorylation was also detected in certain cell cycle mutants blocked in progression through S phase, indicating that T14 phosphorylation might normally occur at low stoichiometry during DNA replication or early G2. Strains in which the chromosomal copy of cdc2 was replaced with either a T14A or a T14S mutant allele were generated and the phenotypes of these strains are consistent with T14 phosphorylation playing an inhibitory role in the activation of Cdc2 as it does in higher eukaryotes. We have also obtained evidence that Wee1 but not Mik1 or Chk1 is required for phosphorylation at this site, that the Mik1 and Chk1 protein kinases are unable to drive T14 phosphorylation in vivo, that residue 14 phosphorylation requires previous phosphorylation at Y15, and that the T14A mutant, unlike Y15F, is recessive to wild-type Cdc2 activity. Finally, the normal duration of G2 delay after irradiation or hydroxyurea treatment in a T14A mutant strain indicates that T14 phosphorylation is not required for the DNA damage or replication checkpoint controls.


Sign in / Sign up

Export Citation Format

Share Document