scholarly journals Cyclin-Dependent Kinase Activity Is Required for Progesterone Receptor Function: Novel Role for Cyclin A/Cdk2 as a Progesterone Receptor Coactivator

2005 ◽  
Vol 25 (1) ◽  
pp. 264-277 ◽  
Author(s):  
Ramesh Narayanan ◽  
Abayomi A. Adigun ◽  
Dean P. Edwards ◽  
Nancy L. Weigel

ABSTRACT Our studies examining the role of the cell cycle-regulated kinase cyclin A/Cdk2 in progesterone receptor (PR) action have demonstrated that cyclin-dependent kinase activity is required for PR function and that cyclin A/Cdk2 functions as a PR coactivator. Although Cdk2 can phosphorylate PR, elimination of these phosphorylation sites has little effect on the ability of cyclin A/Cdk2 to stimulate PR activity. PR interacts with cyclin A and recruits cyclin A/Cdk2 to progestin-responsive promoters, stimulating transcription. Inhibition of Cdk2 activity abolishes progesterone-dependent activation of PR target genes in part through inhibition of PR-dependent recruitment of steroid receptor coactivator 1 (SRC-1) and subsequent histone H4 acetylation at the target promoter. In vitro studies revealed that the interaction between SRC-1 and PR is dependent upon phosphorylation of SRC-1. This heretofore-unknown mechanism provides a potential means for integrating the regulation of PR activity with cell cycle progression. Moreover, the ability of PR to recruit cyclin A/Cdk2 to target promoters provides locally elevated levels of kinase, which can preferentially facilitate phosphorylation-dependent interactions and enzymatic activities of coactivators at the target promoter.

1999 ◽  
Vol 19 (7) ◽  
pp. 4843-4854 ◽  
Author(s):  
Heinz Ruffner ◽  
Wei Jiang ◽  
A. Grey Craig ◽  
Tony Hunter ◽  
Inder M. Verma

ABSTRACT BRCA1 is a cell cycle-regulated nuclear protein that is phosphorylated mainly on serine and to a lesser extent on threonine residues. Changes in phosphorylation occur in response to cell cycle progression and DNA damage. Specifically, BRCA1 undergoes hyperphosphorylation during late G1 and S phases of the cell cycle. Here we report that BRCA1 is phosphorylated in vivo at serine 1497 (S1497), which is part of a cyclin-dependent kinase (CDK) consensus site. S1497 can be phosphorylated in vitro by CDK2-cyclin A or E. BRCA1 coimmunoprecipitates with an endogenous serine-threonine protein kinase activity that phosphorylates S1497 in vitro. This cellular kinase activity is sensitive to transfection of a dominant negative form of CDK2 as well as the application of the CDK inhibitors p21 and butyrolactone I but not p16. Furthermore, BRCA1 coimmunoprecipitates with CDK2 and cyclin A. These results suggest that the endogenous kinase activity is composed of CDK2-cyclin complexes, at least in part, concordant with the G1/S-specific increase in BRCA1 phosphorylation.


2008 ◽  
Vol 29 (4) ◽  
pp. 986-999 ◽  
Author(s):  
Arpita Ray ◽  
Melissa K. James ◽  
Stéphane Larochelle ◽  
Robert P. Fisher ◽  
Stacy W. Blain

ABSTRACT Cell cycle progression is regulated by cyclin-dependent kinases (cdk's), which in turn are regulated by their interactions with stoichiometric inhibitors, such as p27Kip1. Although p27 associates with cyclin D-cyclin-dependent kinase 4 (cdk4) constitutively, whether or not it inhibits this complex is dependent on the absence or presence of a specific tyrosine phosphorylation that converts p27 from a bound inhibitor to a bound noninhibitor under different growth conditions. This phosphorylation occurs within the 3-10 helix of p27 and may dislodge the helix from cdk4's active site to allow ATP binding. Here we show that the interaction of nonphosphorylated p27 with cdk4 also prevents the activating phosphorylation of the T-loop by cyclin H-cdk7, the cdk-activating kinase (CAK). Even though the cyclin H-cdk7 complex is present and active in contact-arrested cells, p27's association with cyclin D-cdk4 prevents T-loop phosphorylation. When p27 is tyrosine phosphorylated in proliferating cells or in vitro with the tyrosine Y kinase Abl, phosphorylation of cdk4 by cyclin H-cdk7 is permitted, even without dissociation of p27. This suggests that upon release from the contact-arrested state, a temporal order for the reactivation of inactive p27-cyclin D-cdk4 complexes must exist: p27 must be Y phosphorylated first, directly permitting cyclin H-cdk7 phosphorylation of residue T172 and the consequent restoration of kinase activity. The non-Y-phosphorylated p27-cyclin D-cdk4 complex could be phosphorylated by purified Csk1, a single-subunit CAK from fission yeast, but was still inactive due to p27's occlusion of the active site. Thus, the two modes by which p27 inhibits cyclin D-cdk4 are independent and may reinforce one another to inhibit kinase activity in contact-arrested cells, while maintaining a reservoir of preformed complex that can be activated rapidly upon cell cycle reentry.


2004 ◽  
Vol 78 (4) ◽  
pp. 1981-1991 ◽  
Author(s):  
Jason S. Knight ◽  
Erle S. Robertson

ABSTRACT Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA3C) is essential for primary B-cell transformation. In this report we show that cyclin A, an activator of S phase progression, bound tightly to EBNA3C. EBNA3C interacted with cyclin A in vitro and associated with cyclin A complexes in EBV-transformed lymphoblastoid cell lines. Importantly, EBNA3C stimulated cyclin A-dependent kinase activity and rescued p27-mediated inhibition of cyclin A/Cdk2 kinase activity by decreasing the molecular association between cyclin A and p27 in cells. Additionally, phosphorylation of the retinoblastoma protein, a major regulator of cell cycle progression, was enhanced both in vitro and in vivo in the presence of EBNA3C. Cyclin A interacted with a region of the carboxy terminus of EBNA3C, shown to be important both for stimulation of cyclin A-dependent kinase activity and for cell cycle progression. This provides the first evidence of an essential EBV latent antigen's directly targeting a cell cycle regulatory protein and suggests a novel mechanism by which EBV deregulates the mammalian cell cycle, which is of critical importance in B-cell transformation.


1997 ◽  
Vol 17 (7) ◽  
pp. 3566-3579 ◽  
Author(s):  
M S Woo ◽  
I Sánchez ◽  
B D Dynlacht

The pRB-related proteins p107 and p130 are thought to suppress growth in part through their associations with two important cell cycle kinases, cyclin A-cdk2 and cyclin E-cdk2, and transcription factor E2F. Although each protein plays a critical role in cell proliferation, the functional consequences of the association among growth suppressor, cyclin-dependent kinase, and transcription factor have remained elusive. In an attempt to understand the biochemical properties of such complexes, we reconstituted each of the p130-cyclin-cdk2 and p107-cyclin-cdk2 complexes found in vivo with purified, recombinant proteins. Strikingly, stoichiometric association of p107 or p130 with either cyclin E-cdk2 or cyclin A-cdk2 negated the activities of these kinases. The results of our experiments suggest that inhibition does not result from substrate competition or loss of cdk2 activation. Kinase inhibitory activity was dependent upon an amino-terminal region of p107 that is highly conserved with p130. Further, a role for this amino-terminal region in growth suppression was uncovered by using p107 mutants unable to bind E2F. To determine whether cellular complexes might display similar regulatory properties, we purified p130-cyclin A-cdk2 complexes from human cells and found that such complexes exist in two forms, one that contains E2F-4-DP-1 and one that lacks the heterodimer. These endogenous complexes behaved like the in vitro-reconstituted complexes, exhibiting low levels of associated kinase activity that could be significantly augmented by dissociation of p130. The results of these experiments suggest a mechanism whereby p130 and p107 suppress growth by inhibiting important cell cycle kinases.


1996 ◽  
Vol 16 (12) ◽  
pp. 6965-6976 ◽  
Author(s):  
E J Smith ◽  
G Leone ◽  
J DeGregori ◽  
L Jakoi ◽  
J R Nevins

Previous studies have demonstrated cell cycle-dependent specificities in the interactions of E2F proteins with Rb family members. We now show that the formation of an E2F-p130 complex is unique to cells in a quiescent, G0 state. The E2F-p130 complex does not reform when cells reenter a proliferative state and cycle through G1. The presence of an E2F-p130 complex in quiescent cells coincides with the E2F-mediated repression of transcription of the E2F1 gene, and we show that the E2F sites in the E2F1 promoter are important as cells enter quiescence but play no apparent role in cycling cells. In addition, the decay of the E2F-p130 complex as cells reenter the cell cycle requires the action of G1 cyclin-dependent kinase activity. We conclude that the accumulation of the E2F-p130 complex in quiescent cells provides a negative control of certain key target genes and defines a functional distinction between these G0 cells and cells that exist transiently in G1.


1996 ◽  
Vol 16 (7) ◽  
pp. 3789-3798 ◽  
Author(s):  
X Huet ◽  
J Rech ◽  
A Plet ◽  
A Vié ◽  
J M Blanchard

Transcription of the gene coding for cyclin A, a protein required for S-phase transit, is cell cycle regulated and is restricted to proliferating cells. To further explore transcriptional regulation linked to cell division cycle control, a genomic clone containing 5' flanking sequences of the murine cyclin A gene was isolated. When it was fused to a luciferase reporter gene, it was shown to function as a proliferation-regulated promoter in NIH 3T3 cells. Transcription of the mouse cyclin A gene is negatively regulated by arrest of cell proliferation. A mutation of a GC-rich sequence conserved between mice and humans is sufficient to relieve transcriptional repression, resulting in a promoter with constitutively high activity. In agreement with this result, in vivo footprinting reveals a protection of the cell cycle-responsive element in G0/early G1 cells which is not observed at later stages of the cell cycle. Moreover, the footprint is present in dimethyl sulfoxide-induced differentiating and not in proliferating Friend erythroleukemia cells. Conversely, two other sites, which in vitro bind ATF-1 and NF-Y, respectively, are constitutively occupied throughout cell cycle progression.


1998 ◽  
Vol 72 (10) ◽  
pp. 8133-8142 ◽  
Author(s):  
Yunquan Jiang ◽  
Ashfaque Hossain ◽  
Maria Teresa Winkler ◽  
Todd Holt ◽  
Alan Doster ◽  
...  

ABSTRACT Despite productive viral gene expression in the peripheral nervous system during acute infection, the bovine herpesvirus 1 (BHV-1) infection cycle is blocked in sensory ganglionic neurons and consequently latency is established. The only abundant viral transcript expressed during latency is the latency-related (LR) RNA. LR gene products inhibit S-phase entry, and binding of the LR protein (LRP) to cyclin A was hypothesized to block cell cycle progression. This study demonstrates LRP is a nuclear protein which is expressed in neurons of latently infected cattle. Affinity chromatography indicated that LRP interacts with cyclin-dependent kinase 2 (cdk2)-cyclin complexes or cdc2-cyclin complexes in transfected human cells or infected bovine cells. After partial purification using three different columns (DEAE-Sepharose, Econo S, and heparin-agarose), LRP was primarily associated with cdk2-cyclin E complexes, an enzyme which is necessary for G1-to-S-phase cell cycle progression. During acute infection of trigeminal ganglia or following dexamethasone-induced reactivation, BHV-1 induces expression of cyclin A in neurons (L. M. Schang, A. Hossain, and C. Jones, J. Virol. 70:3807–3814, 1996). Expression of S-phase regulatory proteins (cyclin A, for example) leads to neuronal apoptosis. Consequently, we hypothesize that interactions between LRP and cell cycle regulatory proteins promote survival of postmitotic neurons during acute infection and/or reactivation.


2001 ◽  
Vol 75 (9) ◽  
pp. 4247-4257 ◽  
Author(s):  
Michael Bouchard ◽  
Stavros Giannakopoulos ◽  
Edith H. Wang ◽  
Naoko Tanese ◽  
Robert J. Schneider

ABSTRACT Numerous studies have demonstrated that the hepatitis B virus HBx protein stimulates signal transduction pathways and may bind to certain transcription factors, particularly the cyclic AMP response element binding protein, CREB. HBx has also been shown to promote early cell cycle progression, possibly by functionally replacing the TATA-binding protein-associated factor 250 (TAFII250), a transcriptional coactivator, and/or by stimulating cytoplasmic signal transduction pathways. To understand the basis for early cell cycle progression mediated by HBx, we characterized the molecular mechanism by which HBx promotes deregulation of the G0 and G1 cell cycle checkpoints in growth-arrested cells. We demonstrate that TAFII250 is absolutely required for HBx activation of the cyclin A promoter and for promotion of early cell cycle transit from G0 through G1. Thus, HBx does not functionally replace TAFII250 for transcriptional activity or for cell cycle progression, in contrast to a previous report. Instead, HBx is shown to activate the cyclin A promoter, induce cyclin A–cyclin-dependent kinase 2 complexes, and promote cycling of growth-arrested cells into G1 through a pathway involving activation of Src tyrosine kinases. HBx stimulation of Src kinases and cyclin gene expression was found to force growth-arrested cells to transit through G1 but to stall at the junction with S phase, which may be important for viral replication.


1999 ◽  
Vol 19 (1) ◽  
pp. 635-645 ◽  
Author(s):  
Cain H. Yam ◽  
Raymond W. M. Ng ◽  
Wai Yi Siu ◽  
Anita W. S. Lau ◽  
Randy Y. C. Poon

ABSTRACT Cyclin A-Cdk2 complexes bind to Skp1 and Skp2 during S phase, but the function of Skp1 and Skp2 is unclear. Skp1, together with F-box proteins like Skp2, are part of ubiquitin-ligase E3 complexes that target many cell cycle regulators for ubiquitination-mediated proteolysis. In this study, we investigated the potential regulation of cyclin A-Cdk2 activity by Skp1 and Skp2. We found that Skp2 can inhibit the kinase activity of cyclin A-Cdk2 in vitro, both by direct inhibition of cyclin A-Cdk2 and by inhibition of the activation of Cdk2 by cyclin-dependent kinase (CDK)-activating kinase phosphorylation. Only the kinase activity of Cdk2, not of that of Cdc2 or Cdk5, is reduced by Skp2. Skp2 is phosphorylated by cyclin A-Cdk2 on residue Ser76, but nonphosphorylatable mutants of Skp2 can still inhibit the kinase activity of cyclin A-Cdk2 toward histone H1. The F box of Skp2 is required for binding to Skp1, and both the N-terminal and C-terminal regions of Skp2 are involved in binding to cyclin A-Cdk2. Furthermore, Skp2 and the CDK inhibitor p21 Cip1/WAF1 bind to cyclin A-Cdk2 in a mutually exclusive manner. Overexpression of Skp2, but not Skp1, in mammalian cells causes a G1/S cell cycle arrest.


Sign in / Sign up

Export Citation Format

Share Document