ubiquitin ligase e3
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 15)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Eryi Sun ◽  
Ping Zhang

Background. RNF12 has been linked to a variety of biological activities, including the control of the MDM2/P53 pathway, although its additional functions remain unclear. RNF12 was discovered to be a new ubiquitin ligase (E3) for RB1, amongst the most frequently repressed proteins in cancer of human. Method. Cell Counting Kit-8 was used to detect the cell proliferation; coimmunoprecipitation was used to determine that RNF12 interacts with RB1. Xenograft studies were used to verify the results. Result. In vivo and in vitro RNF12 interacts with RB1 regardless of E3 ligase activity. The ubiquitination of RB1 by RNF12 had an effect on its stability. RNF12 inhibits the RB1 protein and stimulates the MAPK pathway, promoting the growth of GBMs. Conclusion. Our findings show that RNF12 may operate as a tumour promoter by modulating the cancerous proliferation of glioblastoma by controlling the activity of a new RNF12/RB1/MAPK pathway regulatory axis and that this regulatory axis might be a valuable diagnostic focus in glioblastoma.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3265
Author(s):  
Yuxuan Sun ◽  
Ying Zhu ◽  
Peng Cheng ◽  
Mengqian Zhang ◽  
Na Wang ◽  
...  

Ubiquitin ligase (E3) plays a versatile role in gonadal development and spermatogenesis in mammals, while its function in fish is little reported. In this study, a Z-chromosome linked ubiquitin ligase rchy1 in C. semilaevis (Cs-rchy1) was cloned and characterized. The full-length cDNA was composed of 1962 bp, including 551 bp 5′UTR, 736 bp 3′UTR, and 675 bp ORF encoding a 224-amino-acid (aa) protein. Cs-rchy1 was examined among seven different tissues and found to be predominantly expressed in gonads. In testis, Cs-rchy1 could be detected from 40 days post hatching (dph) until 3 years post hatching (yph), but there was a significant increase at 6 months post hatching (mph). In comparison, the expression levels in ovary were rather stable among different developmental stages. In situ hybridization showed that Cs-rchy1 was mainly localized in germ cells, that is, spermatid and spermatozoa in testis and stage I, II and III oocytes in ovary. In vitro RNA interference found that Cs-rchy1 knockdown resulted in the decline of sox9 and igf1 in ovarian cell line and down-regulation of cyp19a in the testicular cell line. These data suggested that Cs-rchy1 might participate in gonadal differentiation and gametogenesis, via regulating steroid hormone synthesis.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6682
Author(s):  
Sachiko Toma-Fukai ◽  
Toshiyuki Shimizu

The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.


2021 ◽  
Author(s):  
Anand Divakaran ◽  
Huda Zahid ◽  
Wenwei Lin ◽  
Taosheng Chen ◽  
Dan Harki ◽  
...  

Targeted protein degradation is a powerful induced-proximity tool to control cellular concentrations of native proteins using small molecules. However, the design of selectivity in protein degradation remains challenging. In the case of Bromodomain and Extra-Terminal (BET) family proteins, BRD4 has emerged as the primary therapeutic target over other family members BRD2, 3 and T, but strategies to selectively degrade BRD4 rely on the use of pan-BET inhibitors optimized for BRD4:E3 protein-ubiquitin ligase (E3) ternary complex formation. Here, we report a potent and selective inhibitor for the first bromodomain of BRD4, iBRD4-BD1 (IC50 = 12 nM, 23-6200-fold intra-BET selectivity). We further use this novel inhibitor to develop dBRD4-BD1 that induces selective degradation of BRD4 at a DC50 of 280 nM. The design of BRD4 selectivity up-front enables the study of BRD4 biology in the absence of wider BET-inhibition, simplifies design of future BRD4-selective degraders as new E3 recruiting ligands are discovered, and provides a tool to design additional heterobifunctional BRD4-selective probes.


2021 ◽  
Vol 118 (33) ◽  
pp. e2107321118
Author(s):  
Afu Fu ◽  
Victoria Cohen-Kaplan ◽  
Noa Avni ◽  
Ido Livneh ◽  
Aaron Ciechanover

Degradation of a protein by the ubiquitin–proteasome system (UPS) is a multistep process catalyzed by sequential reactions. Initially, ubiquitin is conjugated to the substrate in a process mediated by concerted activity of three enzymes; the last of them—a ubiquitin ligase (E3)—belongs to a family of several hundred members, each recognizing a few specific substrates. This is followed by repeated addition of ubiquitin moieties to the previously conjugated one to generate a ubiquitin chain that serves as a recognition element for the proteasome, which then degrades the substrate. Ubiquitin is recycled via the activity of deubiquitinating enzymes (DUBs). It stands to reason that efficiency of such a complex process would depend on colocalization of the different components in an assembly that allows the reactions to be carried out sequentially and processively. Here we describe nuclear condensates that are dynamic in their composition. They contain p62 as an essential component. These assemblies are generated by liquid–liquid phase separation (LLPS) and also contain ubiquitinated targets, 26S proteasome, the three conjugating enzymes, and DUBs. Under basal conditions, they serve as efficient centers for proteolysis of nuclear proteins (e.g., c-Myc) and unassembled subunits of the proteasome, suggesting they are involved in cellular protein quality control. Supporting this notion is the finding that such foci are also involved in degradation of misfolded proteins induced by heat and oxidative stresses, following recruitment of heat shock proteins and their associated ubiquitin ligase CHIP.


2021 ◽  
pp. 247255522110006
Author(s):  
Brice A. P. Wilson ◽  
Donna Voeller ◽  
Emily A. Smith ◽  
Antony Wamiru ◽  
Ekaterina I. Goncharova ◽  
...  

The transfer of the small protein ubiquitin to a target protein is an intricately orchestrated process called ubiquitination that results in modulation of protein function or stability. Proper regulation of ubiquitination is essential, and dysregulation of this process is implicated in several human diseases. An example of a ubiquitination cascade that is a central signaling node in important disease-associated pathways is that of CBLB [a human homolog of a viral oncogene Casitas B-lineage lymphoma (CBL) from the Cas NS-1 murine retrovirus], a RING finger ubiquitin ligase (E3) whose substrates include a number of important cell-signaling kinases. These include kinases important in immune function that act in the T cell receptor and costimulatory pathways, the Tyro/Axl/MerTK (TAM) receptor family in natural killer (NK) cells, as well as growth factor receptor kinases like epidermal growth factor receptor (EGFR). Loss of CBLB has been shown to increase innate and adaptive antitumor immunity. This suggests that small-molecule modulation of CBLB E3 activity could enhance antitumor immunity in patients. To explore the hypothesis that enzymatic inhibition of E3s may result in modulation of disease-related signaling pathways, we established a high-throughput screen of >70,000 chemical entities for inhibition of CBLB activity. Although CBLB was chosen as a proof-of-principle target for inhibitor discovery, we demonstrate that our assay is generalizable to monitoring the activity of other ubiquitin ligases. We further extended our observed in vitro inhibition with additional cell-based models of CBLB activity. From these studies, we demonstrate that a class of natural product–based alkaloids, known as methyl ellipticiniums (MEs), is capable of inhibiting ubiquitin ligases intracellularly.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Lina Liu ◽  
Shu Li ◽  
Alberto Cenci ◽  
Mathieu Rouard ◽  
...  

Abstract Background: Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is the causal agent of Fusarium wilt, and is the most destructive soil-borne and vascular invasive fungus of banana. The sap circulating in vascular cells transports proteins including those that might be involved in disease-resistance processes. However, there is no research to analyze changes in banana vascular sap protein response to TR4 to date. Results: To gain an integrated understanding of differential protein abundance in banana vascular sap during TR4 infection, we performed a comparative proteomic analysis of vascular sap of the resistant ‘Pahang’ and the susceptible ‘Brazilian’ bananas inoculated with TR4. We identified 129 differential expression proteins (DEPs) between resistant and susceptible tested combinations. Of these DEPs, hypersensitive-induced response protein 1 (HIR1) and E3 ubiquitin ligase (E3) decreased in abundance in Pahang with no change in Brazilian under TR4 infection; chalcone isomerase (CHI) and glycine-rich RNA-binding protein (GRP) increased in abundance in Pahang but no significant changes in Brazilian under TR4 infection; carboxylesterase (CXE) and GDSL lipase (GLIP) were specifically in higher abundance in Pahang response to TR4 compared to that of Brazilian. It suggested that these proteins played important roles in bananas against TR4. Conclusions: Our study identified 129 DEPs in vascular sap between resistant and susceptible tested combinations. Of which, HIR1, E3, CHI, GRP, CXE and GLIP played important roles in bananas response to TR4. To our knowledge, this is first report to analyze changes in banana vascular sap proteins in response to TR4, which help us to explore the molecular mechanisms of banana defense to Fusarium wilt.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042110011
Author(s):  
Dahai Liu ◽  
Shao-Xing Dai ◽  
Kan He ◽  
Gong-Hua Li ◽  
Justin Liu ◽  
...  

The ubiquitin-proteasome system (UPS) plays crucial roles in numerous cellular functions. Dysfunction of the UPS shows certain correlations with the pathological changes in Alzheimer’s disease (AD). This study aimed to explore the different impairments of the UPS in multiple brain regions and identify hub ubiquitin ligase (E3) genes in AD. The brain transcriptome, blood transcriptome and proteome data of AD were downloaded from a public database. The UPS genes were collected from the Ubiquitin and Ubiquitin-like Conjugation Database. The hub E3 genes were defined as the differentially expressed E3 genes shared by more than three brain regions. E3Miner and UbiBrowser were used to predict the substrate of hub E3. This study shows varied impairment of the UPS in different brain regions in AD. Furthermore, we identify seven hub E3 genes (CUL1, CUL3, EIF3I, NSMCE1, PAFAH1B1, RNF175, and UCHL1) that are downregulated in more than three brain regions. Three of these genes (CUL1, EIF3I, and NSMCE1) showed consistent low expression in blood. Most of these genes have been reported to promote AD, whereas the impact of RNF175 on AD is not yet reported. Further analysis revealed a potential regulatory mechanism by which hub E3 and its substrate genes may affect transcription functions and then exacerbate AD. This study identified seven hub E3 genes and their substrate genes affect transcription functions and then exacerbate AD. These findings may be helpful for the development of diagnostic biomarkers and therapeutic targets for AD.


2020 ◽  
Vol 16 (10) ◽  
pp. e1008784
Author(s):  
Rebecca J. Burge ◽  
Andreas Damianou ◽  
Anthony J. Wilkinson ◽  
Boris Rodenko ◽  
Jeremy C. Mottram

Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. 2 E1 ubiquitin-activating (E1), 13 E2 ubiquitin-conjugating (E2), 79 E3 ubiquitin ligase (E3) and 20 deubiquitinating cysteine peptidase (DUB) genes can be identified in the Leishmania mexicana genome but, currently, little is known about the role of E1, E2 and E3 enzymes in this parasite. Bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed numerous loss-of-fitness phenotypes in promastigote to amastigote differentiation and mammalian infection. The E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for the successful transformation from promastigote to amastigote and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Of all ubiquitination enzyme null mutants examined in the screen, Δubc2 and Δuev1 exhibited the most extreme loss-of-fitness during differentiation. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, reveal a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a can load ubiquitin onto UBC2, allowing UBC2-UEV1 to form K63-linked di-ubiquitin chains in vitro. Notably, UBC2 can cooperate in vitro with human E3s RNF8 and BIRC2 to form non-K63-linked polyubiquitin chains, showing that UBC2 can facilitate ubiquitination independent of UEV1, but association of UBC2 with UEV1 inhibits this ability. Our study demonstrates the dual essentiality of UBC2 and UEV1 in the differentiation and intracellular survival of L. mexicana and shows that the interaction between these two proteins is crucial for regulation of their ubiquitination activity and function.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Liguo Zhu ◽  
Ying Li ◽  
Longyuan Zhou ◽  
Guang Yang ◽  
Ying Wang ◽  
...  

Ubiquitination is a three-step enzymatic cascade for posttranslational protein modification. It includes the ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). RING-type E3 ubiquitin ligases catalyse the posttranslational proteolytic and nonproteolytic functions in various physiological and pathological processes, such as inflammation-associated signal transduction. Resulting from the diversity of substrates and functional mechanisms, RING-type ligases regulate microbe recognition and inflammation by being involved in multiple inflammatory signalling pathways. These processes also occur in autoimmune diseases, especially inflammatory bowel disease (IBD). To understand the importance of RING-type ligases in inflammation, we have discussed their functional mechanisms in multiple inflammation-associated pathways and correlation between RING-type ligases and IBD. Owing to the limited data on the biology of RING-type ligases, there is an urgent need to analyse their potential as biomarkers and therapeutic targets in IBD in the future.


Sign in / Sign up

Export Citation Format

Share Document